MATERIAL DATA SHEET C42400

Alloy Designation

EN

DIN CEN/TS 13388

UNS

C42400

This alloy is in accordance with RoHS 2002/96/CE for electric and electronic equipments and 2002/53/CE for automotive industry.

Key Characteristics

- Excellent cold forming
- Good corrosion resistance
- · Good conductivity combined with high strength & hardness
- · Low stress corrosion craking
- Good spring poperties

Chemical Composition

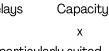
Main Application

Automotive:

Switches and relays, contact, connectors, terminals

Electrical:

Switches and relays, contact, connectors, terminals, components for the electrical industry, stamped parts


Preferred Application

Current Carrying Connectors Switches and Relays хх Х x = well suited

Spring Contact ΧХ

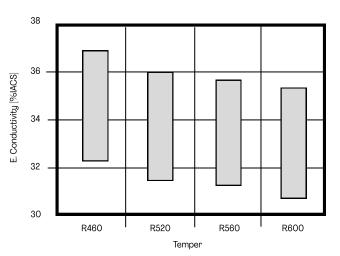
xx = particularly suited

Chemical Composition	Weight percentage		Chemical Composition	Weight percentage	
Cu	87-91	%	Si	0.1-0.3	%
Sn	0.05-0.5	%	Cr	0.1-0.5	%
Zn	Rest	%	Zr	0.05-0.2	%
Ni	0.5-1.5	%			%

Physical Properties

Property Typical values in annealed temper at 20°C	Value	Unit
Density	8.7	g/cm ³
Thermal Expansion coefficent 20 100°C	17.5	10 ⁻⁶ /K
20 300°C	17.7	10 ⁻⁶ /K
Specific Heat Capacity	0.384	J/(g-K)
Thermal conductivity	134	W/(m·K)
Electrical conductivity (1 MS/m = 1 m/(Ω mm ²)	19	MS/m
Electrical conductivity (IACS)	33	%
Thermal coefficient of electrical resistance (0 100°C)	/	10 ⁻³ /K
Modulus of elasticity $(1 \text{ GPa} = 1 \text{ kN/mm}^2)$	115	GPa
cold formed annealed	130	GPa

MATERIAL DATA SHEET C42400



Mechanical Properties (EN 1652)

Temper	Tensile Strength	Yield Strength Minimum	Elongation Minimum	Hardness
	Rm MPa	Rp _{0.2}	A _{50mm} %	HV*
R460 (TM00)	460-540	430*	10	140-180
R520 (TM01)	520-600	500*	5	150-190
R560 (TM02)	560-640	550*	2	170-210
R600 (TM03)	600-680	590*	1	180-220

*Only for information

Electrical Conductivity

Electrical conductivity is strongly influenced by cemical composition A high level cold deformation and small grain size decrease the electrical conductivity moderately. Minimum conductivity level can be specified.

Fabrication Properties*

• Resistant to: Good resistance to atmospheric

Corrosion Resistance*

- corrosion due to formation of protective patina. C42400 has a good resistance in natural and industrial atmosphere (maritime air too). Corrosion resistance, especially against seawater and industrial atmosphere is good and C42400 is resistant to industrial and drinking water, aqueous and alkaline solutions (not oxidizing), pure water vapour (steam), non oxidizing acids (without oxugen in solution) and salts, neutral saline solutions.
- Stress corrosion cracking susceptibility is low.
- Not resistant to: oxidising acids, solutions containing cyanides, ammonia or halogens, hydrous ammonia and halogenated gases, hydrogen sulfide.

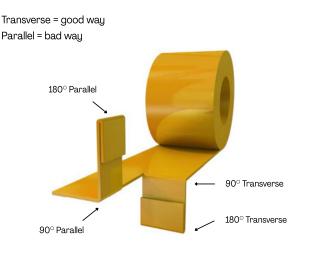
*For more details call our technical service

Cold forming properties Max. 90% between annealings	Excellent
Hot forming properties at 790840°C	Excellent
Machinability (rating 30)	Good
Electroplating properties	Good
Hot tinning properties	Excellent
Soft soldering brazing	Excellent
Resistance welding	Less suitable
Gas shielded arc welding	Good
Laser welding	Excellent
Soft annealing	425-700°C, 1-3h
Stress relieving annealing	200-300°C, 1-3h
*For more details call our technical service	

KMD Precise Copper Strip (Henan) Co., Ltd

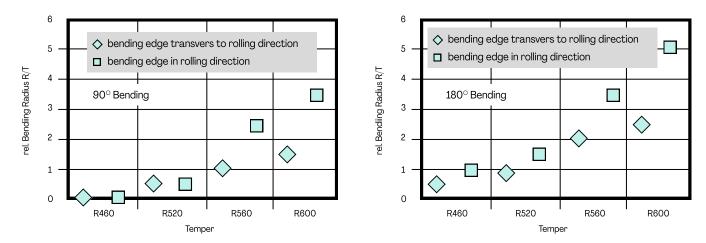
MATERIAL DATA SHEET C42400

Minimum Bending Radius Calculation


Minimum radius = (R/T) x thickness = 0.5 x 0.3 mm = 0.15 mm

Example: R/T = 0.5 and thickness 0.3 mm

from the list


To find out the minimum possible bending radius take the R/T value

Bending Definition

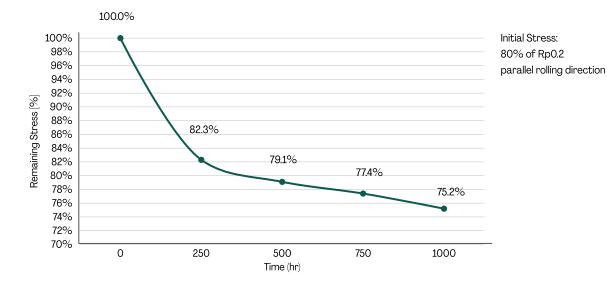
Bending Properties

Thickness:≤0.5mm

Tending test according to EN ISO 7438 is done with 10 mm wide samples. Smaller samples in general - as well as lower thickness - allow a lower bending radius without cracks. If needed we supply bending optimized temper classes that far exceed standard quality. Please take care when comparing with ASTM E290 results, there the bend definition direction is contradictory.

Bending Properties*

Temper	Thickness Range	Bending 90 $^{\circ}$		Bending 180 $^{\circ}$	
		Transvers	Parallel	Transvers	Parallel
	mm	R/T	R/T	R/T	R/T
R460 (TM00)	≤0.5	0	0	0.5	1
R520 (TM01)	≤0.5	0.5	0.5	1	1.5
R560 (TM02)	≤0.5	1	2.5	2	3.5
R600 (TM03)	≤0.5	1.5	3.5	2.5	5


***Measured** at sample width 10 mm according to EN 1654 Possible bending radius = (R/T) x thickness

MATERIAL DATA SHEET C42400

Relaxation Properties

Thermal stress relieved

Stress relaxation is tested with cantilever bending test equipment. This method takes short time relaxation into account, so that the values achieved are very realistic, while other test methods like tube test pretend better properties from the achieved values. Relaxation values give an indication about stress relieve of strip under tension for a certain time and temperature, as it is measured on plain strip. The vehaviour of deformed parts may differ; nevertheless the ratio between the different tempers remains the same.

Typical tes sample thickness is 0.3-0.6 mm.