

Henan KMD Advanced Materials and Technology Co., Ltd.

KMD Technical Marketing Team is proud to announce that the new version of KMD Technical Manual is now available!

The Manual covers all products and services globally offered by KMD. It exposes all grades of high performance copper alloys and standard copper alloys with details and charts on mechanical properties, chemical composition and much more. The Manual is enriched with key data and charts on stress relaxation resistance, bend fatigue and other critical-to-quality features of connector strips. KMD Technical Manual is an indispensable tool for connector designers, materials engineers and procurement personnel in automotive, electronic, data communications and electrical industries.

KMD Technical Manual is now available in 2 versions:

Chinese and English. Please book your copy now by contacting KMD team at the following email address:

info-china@kmdgroup.com

KMD Technical Marketing team of metal scientists and application engineers. They support customers to choose the best technical solutions, to solve performance challenges and to save costs. Please contact KMD anytime if you would like to book a consultancy with one of our Technical Marketing Engineers.

Overview

1. KMD Group

- 1.1 KMD in short
- 1.2 KMD's locations

2. Manufacturing Programme of KMD

- 2.1.1 Manufacturing programme
- 2.1.2 Manufacturing programme (Tolerances)
- 2.2.1 Multilayer
- 2.2.2 Multilayer

3. Standard Alloys

- 3.1 Overview of standard alloys
- 3.2 Chemical composition
- 3.3 Physical properties
- 3.4 Cu-ETP C11000 CW004A
- 3.5 CuZn30 C26000 CW505L
- 3.6 CuZn33 C26800 CW506L
- 3.7 CuZn36 C27000 CW507L
- 3.8 CuZn37 C27200 CW508L
- 3.9 CuSn4 C51100 CW450K
- 3.10 CuSn5 C51000 CW451K
- 3.11 CuSn6 C51900 CW452K
- 3.12 CuSn8 C52100 CW453K
- 3.13 CuSn3Zn9/CuSn2Zn10 C42500 CW454K

4. High Performance Alloys

- 4.1 Overview of HPAs
- 4.2 Chemical composition
- 4.3 Physical properties
- 4.4 Alloy consideration for connectors and electro-mechanical components
- 4.5 Segmentation of selected alloys
- 4.6 C19010
- 4.7 C19005 (C19002)****
- 4.8 C70250
- 4.9 C70310
- 4.10 C14410 CW117C****
- 4.11 C14415 CW117C
- 4.12 C18665
- 4.13 C19400
- 4.14 C42400
- 4.15 C18400/C18160
- 4.16 C64750

5. Important Material Data

- 5.1.1 Relaxation parameter
- 5.1.2 Relaxation (100-200°C)
- 5.1.3 Relaxation (different initial stresses)
- 5.1.4 Relaxation (short time/long time)
- 5.2 Softening characteristic at 300°C / 500°C
- 5.3 Bend fatigue at room temperature
- 5.4 Definition bending axle

6. Hot Dip Tinning

- 6.1 Reasons for the hot dip tinning
- 6.2 Coating programme
- 6.3 Hot dip tinning facility
- 6.4 Hot dip tinning
- 6.5 Tin layers
- 6.6 Evaluation of tinned surfaces
- 6.7 General information about the surface protection

7. Principle Characteristics for Connector Design

7.1 The normal force and its influence factors

8. Summary

8.1 Selection guide for alloys and layers

****Deviation in the chemical composition

Printing date: 12/2025

1.1 KMD in Short

KMD Group is a global producer of high quality copper and copper alloy strips used in particular for electric and electronic connector applications.

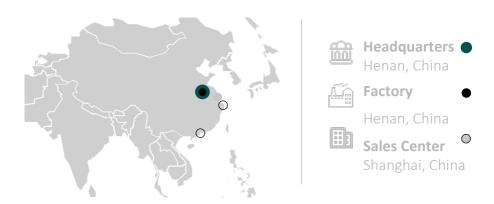
We produce a wide range of copper alloys specifically tailored to the requirements of connector manufacturing, electrical and electronic components, and other high-end applications.

KMD Group was wholly acquired by Golden Dragon Group on May 31, 2023. Golden Dragon Group is a leader in China's copper processing industry, with three business units of copper tube, copper strip and copper wire, and several factories in the United States, Mexico and China.

KMD is committed to becoming the world's leading producer of high-quality strips for numerous connector market segments. KMD is a customer-centric main supplier of high-quality connector strip. We have long-term relationships with leaders and innovation drivers in the global connector industry.

Our high-performance alloy strips are popular all over the world.

The KMD website, now available in Chinese and English, caters to the requirements of the entire customer base: from providing up-to-date metal price information for centralized sourcing and individual purchases, to allowing designers and technicians to retrieve up-to-date product data sheets.


Welcome to visit our website

www.kmdgroup.com\en

www.kmdgroup.com

1.2 KMD's Location

Chinese Factory

Henan KMD Advanced Materials and Technology Co., Ltd.

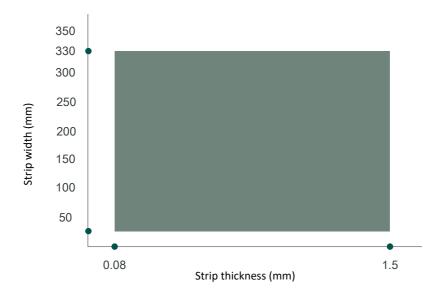
No. 282 West Renmin Road Xinxiang, Henan, Peoples' Republic of China

Peoples' Republic of China Phone: +86 2164478680 info-china@kmdgroup.com

Asia Pacific Sales Headquater

Henan KMD Advanced Materials and Technology Co., Ltd. Shanghai Branch

Manpo International Business Center, Room 310B, XinHua Road 644, Changning District, Zip 200052, Shanghai, Peoples' Republic of China


Phone: +86 2164478680 info-china@kmdgroup.com

Hong Kong Sales

KMD (HK) Trading Co., Ltd.

42/F Central Plaza, 18 Harbour Road, Wanchai, Hong Kong Peoples' Republic of China info-hongkong@kmdgroup.com

2.1. 1 Manufacturing Programme

Other thicknesses and widths upon request

- Bare strips
- Pre-tinned strips
 Hot dip tinned
 Electrolytic tinned
- Special qualities Narrow tolerances Stress levelled Stress annealed

■ Traverse wound strips

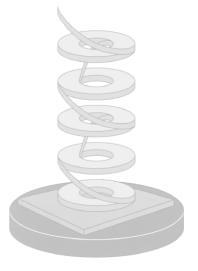
Drum weight (kg) 300-1500 Strip width (mm) 20 - 35 Strip thickness (mm) 0.25 - 0.60 Wooden, plastic and metal drums Flange less

Multilayer

Strip thickness (mm) 0.15-0.80 Strip width (mm) 15-50 Max. pallet weight (kg) 2500* * Higher pallet weight on request

2.1. 2 Manafucturing programme (Tolerances)

Width Tolenrance Standard							
Strip Thickness		Strip Wid	dth (mm)				
(mm)	12-50	51-100	101-200	201-330			
0.08 - 1.00	+ 0.20	+ 0.30	+ 0.40	+ 0.60			
1.01 - 1.50	+ 0.30	+ 0.40	+ 0.50	+ 1.00			


Width Tolenrance Precision								
Strip Thickness		Strip Wic	dth (mm)					
(mm)	12-50	51-100	101-200	201-330				
0.08 - 1.00	+ 0.10	+ 0.20	+ 0.30	+ 0.40				
1.01 - 1.50	+ 0.20	+ 0.20	+ 0.40	+ 0.60				

Strip Thickness	Thickness	Tolerance
(mm)	Standard	Precision
0.08 - 0.20	± 0.005	± 0.004
0.21 - 0.30	± 0.007	± 0.005
0.31 - 0.40	± 0.015	± 0.006
0.41 - 0.50	± 0.015	± 0.008
0.51 - 0.60	± 0.017	± 0.010
0.61 - 0.70	± 0.020	± 0.010
0.71 - 0.85	± 0.022	± 0.012
0.86 - 1.20	± 0.025	± 0.015
1.21 - 1.50	± 0.030	± 0.020

2.2.1 Multilayer

The economical coil of Copper, Bronze and High Performance Alloys. Multilayer is a system where several large pancake coils are joined together by resistance welding and supplied palletised for use on pallet de-coilers.

The coil ends are joined by welding the outer to outer and inner to inner ends, forming one continous strip. The multilayer is then unreeled in the opposite direction during processing.

Standard width (mm): 15-50 Standard thickness (mm): 0.15-0.80

Multilayer

Delivery format:

Height of pallet: max. 490 mm
 Circular pallet ø: max. 1,600 mm
 Minimum order quantity: min. 1,000 kg
 Pallet weight: max. 2,500 kg *
 Outer diameter ø: max. 1,500 mm

Inner diameter ø 300 mm for thickness: 0.15 - 0.40 mm Inner diameter ø 400 mm for thickness: 0.15 - 0.80 mm

* Higher pallet weights on request

2.3. 2 Multilayer

Your advantage:

Increased efficiency = increase of the productivity = cost savings when processing KMD alloys.

The use of multilayer optimises production, reduces coil changes and labour costs and keeps scrap to the minimum.

Potential savings using multilayer Example for strip dimension: 0. 25 x 25 mm = 12 Single coils

Strip material

up to 44 m strip

Tooling time

■ up to 165 minutes longer machine running capacity, through multilayer in comparison to 12 single coils, without stamping starts of single coils = productivity increase of approx. 13 %.

Tool capacity

■ up to 25 % less tooling breaks caused by starting single coils.

De-coiler system of KMD own machinery manufacture

- customer designed conception
- reduction of investment spending by customer-orientated accounting system

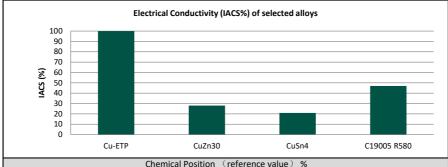
3.1 Overview of Standard Alloy

Page	ASTM	DIN-EN	CEN	Application	
3.4	C11000	Cu-ETP	CW 004 A	Basic material for electrical parts.	
3.5	C26000	CuZn30	CW 505 L		
3.6	C26800	CuZn33	CW 506 L	Basic material for electrical components, installation parts in the electrical industry. Zinc	
3.7	C27000	CuZn36	CW 507 L	content proportionally reduces metall costs.	
3.8	C27200	CuZn37	CW 508 L		
3.9	C51100	CuSn4	CW 450 K		
3.10	C51000	CuSn5	CW 451 K	Contact springs; connectors; membranes; switch elements;	
3.11	C51910	CuSn6	CW 452 K	fixed contacts. Ultra-high strength spring elements.	
3.12	C52100	CuSn8	CW 453 K		
3.13	C42500	CuSn3Zn9 - CuSn2Zn10	CW454K	Good compromise between alloy properties, lower metal cost and better scrap value assessment conditions.	

The KMD alloys are RoHS conform.

3. 2 Chemical Composition

Page	Alloy	Cu (%)	O (%)	P (%)	Zn (%)	Ni (%)	Sn (%)	Fe (%)	Mn (%)	Si (%)	Mg (%)	Zr (%)	Other (%)
3.4	Cu-ETP-C11000	99.9	≤ 0.040										
3.5	CuZn30-C26000	69-71			Rest	max. 0.3	max. 0.1	max. 0.05					
3.6	CuZn33-C26800	66-68			Rest	max. 0.3	max. 0.1	max. 0.05					
3.7	CuZn36-C27000	63.5- 65.5			Rest	max. 0.3	max. 0.1	max. 0.05					
3.8	CuZn37-C27200	62-64			Rest	max. 0.3	max. 0.1	max. 0.10					
3.9	CuSn4-C51100	Rest		0.01- 0.4			3.5- 4.5						
3.10	CuSn5-C51000	Rest		0.01- 0.4			4.5- 5.5						
3.11	CuSn6-C51900	Rest		0.01- 0.4			5.5- 7.0						
3.12	CuSn8-C52100	Rest		0.01- 0.4			7.5- 8.5						
3.13	CuSn3Zn9/ CuSn2Zn10 - C42500	87-90			Rest		1.5- 3.0						


3.3 Physical Properties

Page	Alloy	Density*	Therm. expansion coefficient **	Thermal conductivity	Electr. Conductivity ***	Electr. Conductivity ***	Modulus of elasticity*
		g/cm³	10 ⁻⁶ K	W/(m·K)	MS/m	IACS(%)	GPa
3.4	Cu-ETP-C11000	8.9	17.7	394	58	100	127
3.5	CuZn30-C26000	8.5	19.7	126	14	24	115
3.6	CuZn33-C26800	8.5	19.9	121	14	24	112
3.7	CuZn36-C27000	8.45	20.2	121	14	24	110
3.8	CuZn37-C27200	8.45	20.2	121	14	24	110
3.9	CuSn4-C51100	8.85	17.8	100	11	19	120
3.10	CuSn5-C51000	8.85	17.8	96	9	15	120
3.11	CuSn6-C51900	8.8	18.5	75	7.5	13	118
3.12	CuSn8-C52100	8.8	18.5	67	6.5	11	115
3.13	CuSn3Zn9/ CuSn2Zn10 - C42500	8.75	18.4	120	14	24	126

^{***} Values for the lowest temper class

	Application Range	
	Basic material for electrical parts.	
	Physical Properties	
Density *	g/cm³	8.9
Thermal conductivity *	W/(m·k)	394
Electr. conductivity ***	MS/m	58/57
Electr. conductivity ***	IACS (%)	100/98.3
Thermal expansion c. **	10 ⁻⁶ K	17.7
Modulus of elasticity *	GPa	127

	Chemical Position	(Telefelice value)	/0
Cu		99.9	
О		≤ 0.040)

Condition	Temper class	Tensile strength	Yield strength	Elongation	Hardness	Electr. conductivity	Benda	ability
		T.S. min max.	Rp _{0.2} min.	A50 min.	(reference value)		,	1) 2) O°
		MPa	MPa	%	HV	MS/m	GW	BW
			() only information				Strip thickness ≤0.5mm	Strip thickness ≤0.5mm
Cold rolled	R220	220 - 260	(max. 140)	33	40 - 65	58	0	0
Cold rolled	R240	240 - 330	180	10	65 - 95	57	0	0
Cold rolled	R290	290 - 360	250	4	90 - 110	57	0	0.5
Cold rolled	R360	min. 360	320	2	min. 110	57	1	2

^{*}Reference values at room temperature

^{**}Between 20 and 300 °C

^{***} Values for the lowest temper class

 $r = x \cdot t$ (strips up to t = 0.50 mm)

Sample width = 10 mm / bending at smaller bending widths on request (Evaluation according to page 5.4.2. of Hand-Out)

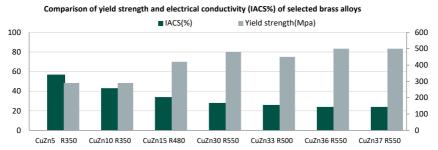
	Application Range							
Basic material for electrical componen	ts, installation parts in the electrical ind	ustry. Zinc content proportionally						
	reduces metall costs.							
Physical Properties								
Density *	g/cm³	8.5						
Thermal conductivity *	W/(m·k)	126						
Electr. conductivity ***	MS/m	14						
Electr. conductivity ***	IACS (%)	24						
Thermal expansion c. ** 10 ⁻⁶ K 19.7								
Modulus of elasticity *	GPa	115						

Comparison of yield strength and electrical conductivity (IACS%) of selected brass alloys ■ IACS(%) ■ Yield strength(Mpa) 100 600 500 80 400 60 300 40 200 20 100 0 CuZn37 R550 CuZn5 R350 CuZn10 R350 CuZn15 R480 CuZn30 R550 CuZn33 R500 CuZn36 R550

Chemical Position (reference value)

Cu	69 - 71	Ni		max. 0.3		Fe	max. 0.05	
Zn	Rest	Sn		max. 0.1				
Condition	Temper class	Tensile strength	Yield strength	Elongation	Hardness	Electr. conductivity		ability
		T.S. min max.	Rp _{0.2} min.	A50 min.	(reference value)			1) 2) 3) O°
		MPa	MPa	%	HV	MS/m	GW	BW
			() only information				Strip thickness ≤0.5mm	Strip thickness ≤0.5mm
Cold rolled	R270	270 - 350	(max. 160)	40	55 - 105	14	0	0
Cold rolled	R350	350 - 430	(170)	21	95 - 145	14	0	0
Cold rolled	R410	410 - 490	(350)	9	120 - 160	14	0	1
Cold rolled	R480	480 - 570	(430)	4	150 - 190	14	0.5	2
Cold rolled	R550	550 - 640	(480)	2	170 - 210	14	1	3
Cold rolled	R630	min. 630	(560)	-	min. 190	14	-	-

^{*}Reference values at room temperature


 $r = x \cdot t$ (strips up to t = 0.50 mm)

Sample width = 10 mm / bending at smaller bending widths on request (Evaluation according to page 5.4.2. of Hand-Out)

 $^{^{3\,)}}$ valid only as thermal stress relieved qualities

	Application Range						
Basic material for electrical components,	installation parts in the electrical inc	dustry. Zinc content proportionally					
	reduces metall costs.						
	Physical Properties						
Density *	g/cm³	8.5					
Thermal conductivity *	W/(m·k)	121					
Electr. conductivity ***	MS/m	14					
Electr. conductivity ***	IACS (%)	24					
Thermal expansion c. ** 10 -6 K 19.9							
Modulus of elasticity *	·						

Chemical Position (reference value) %

max. 0.3

Zn	Rest	Sn		max. 0.1				
Condition	Temper class	Tensile strength	Yield strength	Elongation	Hardness	Electr. conductivity		ability
		T.S.	Rp _{0.2}	A50	(reference		R/t 1	.) 2) 3)
		min max.	min.	min.	value)		9	0°
		MPa	MPa	%	HV	MS/m	GW	BW
			() only				Strip	Strip
			information				thickness	thickness
							≤0.5mm	≤0.5mm
Cold rolled	R280	280 - 380	(max. 170)	40	55 - 95	14	0	0
Cold rolled	R350	350 - 430	(170)	23	95 - 125	14	0	0
Cold rolled	R420	420 - 500	(300)	6	125 - 155	14	0	0
Cold rolled	R500	min. 500	(450)	3	min. 155	14	0.5	0.5

^{*}Reference values at room temperature

66 - 68

max. 0.05

Cu

Fe

^{**}Between 20 and 300 °C

^{***} Values for the lowest temper class

 $r = x \cdot t$ (strips up to t = 0.50 mm)

²⁾ Sample width = 10 mm / bending at smaller bending widths on request (Evaluation according to page 5.4.2. of Hand-Out)

 $^{^{3\,)}}$ valid only as thermal stress relieved qualities

				Applio	cation Range					
Basic m	nateri	al for electri	cal component	•	•		dustry. Zinc cor	ntent propo	ortionally	
					s metall cost					
				Physic	al Properties					
		Density			g/cm³			8.45		
		conductivity			W/(m⋅k)			121		
	Electr. conductivity *** MS/m 14									
		conductivity			IACS (%)			24		
		expansion c.			10 ⁻⁶ K			20.2		
Mod	dulus	of elasticity	*		GPa			110		
	C	omparison of	yield strength ar	nd electrical co	onductivity (IA	CS%) of selec	ted brass alloys			
100				■ IACS(%)	■ Yiel	d strength(M	pa)		- 600	
100										
80									- 500	
60									- 400	
60									- 300	
40								_	- 200	
20						_	-8			
			_						100	
0	67.	E 0250 C.	n10 R350 CuZn	45 D400 C-7	-20 PFF0 - C	uZn33 R500	C7:-26 PEFO 6		⊥ o	
	Cuzr	15 R350 Cu2					CuZn36 R550 C	uZn37 R550		
			Cher	mical Positior	reference	e value)%				
Cu		63.5 - 65.5	Ni		max. 0.3		Fe	max. 0.05		
Zn		Rest	Sn	ı	max. 0.1			1		
Condit	ion	Temper class	Tensile strength	Yield strength	Elongation	Hardness	Electr. conductivity	Benda	ability	
			T.S.	Rp _{0.2}	A50	(reference	,	R/t 1	.) 2) 3)	
			min max.	min.	min.	value)			0°	
			MPa	MPa	%	HV	MS/m	GW	BW	
				() only				Strip	Strip	
				information thickness						
								≤0.5mm	≤0.5mm	
Cold ro		R300	300 - 370	(max. 180)	38	55 - 105	14	0	0	
Cold ro		R350	350 - 430	(170)	19	95 - 125	14	0	0	
Cold ro	_	R410	410 - 490	(300)	8	120 - 155	14	0	0	
Cold ro		R480	480 - 560	(430)	3	150 - 180	14	0.5	2	
Cold ro		R550	min. 550	(500)	-	min. 170	14	1	3	
Cold ro	lled	R630	min. 630	(600)	-	min. 190	14	-	-	

^{*}Reference values at room temperature

^{**}Between 20 and 300 °C

^{***} Values for the lowest temper class

 $r = x \cdot t$ (strips up to t = 0.50 mm)

²⁾ Sample width = 10 mm / bending at smaller bending widths on request (Evaluation according to page 5.4.2. of Hand-Out)

 $^{^{3\,)}}$ valid only as thermal stress relieved qualities

	Application Range							
Basic material for electrical components, installation parts in the electrical industry. Zinc content proportionally								
	reduces metall costs.							
Physical Properties								
Density * g/cm³ 8.45								
Thermal conductivity *	W/(m·k)	121						
Electr. conductivity ***	MS/m	14						
Electr. conductivity ***	Electr. conductivity *** IACS (%) 24							
Thermal expansion c. ** 10 ⁻⁶ K 20.2								
Modulus of elasticity *	GPa	110						

			■ IAC	CS(%)	Yield strength	(Mpa)	
00				• •		. , ,	
30							
50	_						
10			_	_	_		
20		_	_		_	_	

		Che	mical Positior	reference	e value)%			
Cu	62 - 64	Ni		max. 0.3		Fe	max. 0.10	
Zn	Rest	Sn		max. 0.1				
Condition	Temper class	Tensile Yield strength strength		Elongation	Hardness	Electr. conductivity	Benda	•
		T.S.	Rp _{0.2}	A50	(reference		R/t 1	.) 2) 3)
		min max.	min.	min.	value)		9(0°
		MPa	MPa	%	HV	MS/m	GW	BW
			() only				thickness	thickness
			information				≤0.5mm	≤0.5mm
Cold rolled	R300	300 - 370	(max. 180)	38	55 - 105	14	0	0
Cold rolled	R350	350 - 430	(170)	19	95 - 125	14	0	0
Cold rolled	R410	410 - 490	(300)	8	120 - 155	14	0	0
Cold rolled	R480	480 - 560	(430)	3	150 - 180	14	0.5	2
Cold rolled	R550	min. 550	(500)	-	min. 170	14	1	3

^{*}Reference values at room temperature

(600)

14

Cold rolled

min. 190

R630

min. 630

^{**}Between 20 and 300 °C

^{***} Values for the lowest temper class

 $r = x \cdot t$ (strips up to t = 0.50 mm)

Sample width = 10 mm / bending at smaller bending widths on request (Evaluation according to page 5.4.2. of Hand-Out)

 $^{^{3\,)}}$ valid only as thermal stress relieved qualities

	Application Range	
Contact springs; connectors; mem	branes; switch elements; fixed cor	ntacts. Ultra-high strength spring elements.
	Physical Properties	
Density *	g/cm³	8.85
Thermal conductivity *	W/(m·k)	100
Electr. conductivity ***	MS/m	11
Electr. conductivity ***	IACS (%)	19
Thermal expansion c. **	10 ⁻⁶ K	17.8
Modulus of elasticity *	GPa	120

Cu	Rest	Р			0.01 -	0.4						
Sn	3.5 - 4.5											
Condition	Temper	Tensile strength	Yie stre	eld ngth	Elong	gation	Hardness	Electr. conductivity	В	endabili	ty 90° ^{1) 2}	!) 3)
	Class	T.S.	Rp	0.2	Α	50	(reference		St	rip thickn	ess≤0.5	mm
		min max.	m	in.	m	in.	value)			R	/t	
		MPa	М	Pa		%	HV	MS/m	0	SW		w
			3)	4)	3)	4)				Thermal		Thermal
									Stretch	stress	Stretch	
									leveled	relieved	leveled	relieved
Cold rolled	R290	290 - 390	max	. 190	4	10	70 - 105	11	0	0	0	0
Cold rolled	R390	390 - 490	320	250	17	20	115 - 155	11	0	0	0	0
Cold rolled	R480	480 - 570	440	400	8	13	150 - 180	11	0	0	0	0
Cold rolled	R540	540 - 630	480	450	6	12	160 - 200	11	0	0	0.5	0
Cold rolled	R600	600 - 660	560	530	5	12	min. 180	11	0	0	1	0
Cold rolled	R660	660 - 720	620	590		7	min. 180	11		-	-	-
Cold rolled	R700	700 - 800		640		3	min. 180	11	-	-	-	-

Chemical Position (reference value) %

^{*}Reference values at room temperature

^{**}Between 20 and 300 °C

^{***} Values for the lowest temper class

 $^{^{1)}}$ r = x · t (strips up to t = 0.50 mm)

 $^{^{2)}\,}$ Sample width = 10 mm $\,/$ bending at smaller bending widths on request (Evaluation according to page 5.4.2. of Hand-Out)

 $^{^{3\,)}}$ valid only as thermal stress relieved qualities

⁴⁾ Thermal stress relieved

	Application Range	
Contact springs; connectors; men	nbranes; switch elements; fixed cont	acts. Ultra-high strength spring elements.
	Physical Properties	
Density *	g/cm³	8.85
Thermal conductivity *	W/(m·k)	96
Electr. conductivity ***	MS/m	9
Electr. conductivity ***	IACS (%)	15
Thermal expansion c. **	10 ⁻⁶ K	17.8
Modulus of elasticity *	GPa	120

Cu	Rest	P			0.01 -	0.4						
Sn	4.5 - 5.5											
Condition	Temper	Tensile strength		eld ngth	Elong	ation	Hardness	Electr. conductivity	В	endabilit	y 90° ^{1) 2)}	3)
	Class	T.S.	Rp	0.2	A!	50	(reference		St	rip thickne	ss≤0.5n	nm
		min max.	m	in.	m	in.	value)			R,	⁄t	
		MPa	M	Pa	9	6	HV	MS/m		SW.	В	W
			3)	4)	3)	4)				Thermal		Therma
									Stretch	stress	Stretch	stress
									leveled	relieved	leveled	relieved
Cold rolled	R310	310 - 390	max	. 250	4	5	70 - 105	9	0	0	-	-
Cold rolled	R400	400 - 500	340	-	17	-	120 - 160	9	0	0		-
Cold rolled	R490	490 - 580	450	440	12	19	160 - 190	9	0	0	0	0
Cold rolled	R550	550 - 640	500	480	5	13	180 - 210	9	0	0	1	0.5
Cold rolled	R630	630 - 720	570	560	3	7	200 - 230	9	1	0	2	1
Cold rolled	R690	min. 690	630	600	2	4	min. 220	9	2.5	2	3.5	3

Chemical Position (reference value) %

^{*}Reference values at room temperature

^{**}Between 20 and 300 °C

^{***} Values for the lowest temper class

 $r = x \cdot t$ (strips up to t = 0.50 mm)

²⁾ Sample width = 10 mm / bending at smaller bending widths on request (Evaluation according to page 5.4.2. of Hand-Out)

³⁾ valid only as thermal stress relieved qualities

⁴⁾ Thermal stress relieved

3.11 CuSn6 - C51900 - CW452K

	Application Range	
Contact springs; connectors; men	nbranes; switch elements; fixed conf	acts. Ultra-high strength spring elements.
	Physical Properties	
Density *	g/cm³	8.8
Thermal conductivity *	W/(m·k)	75
Electr. conductivity ***	MS/m	7.5
Electr. conductivity ***	IACS (%)	13
Thermal expansion c. **	10 ⁻⁶ K	18.5
Modulus of elasticity *	GPa	118

			Ch	emical	Positi	on (r	eference val	ue)%				
Cu	Rest	P			0.01 -	0.4						
Sn	5.5 - 7.0											
Condition	Temper class	Tensile strength		eld ngth	Elong	ation	Hardness	Electr. conductivity	E	Bendabili	ity 90° ^{1) 2}	!) 3)
	Class	T.S.	Rp	0.2	Α	50	(reference		S	trip thickn	ess≤0.5	mm
		min max.	m	in.	m	in.	value)			F	R/t	
		MPa	М	Pa	9	%	HV	MS/m	G	W	Е	3W
			3)	4)	3)	4)				Thermal		Thermal
									Stretch	stress	Stretch	stress
									leveled	relieved	leveled	relieved
Cold rolled	R350	350 - 420	max	. 300	4	5	80 - 120	7.5	0	0	0	0
Cold rolled	R420	420 - 520	350	340	22	29	120 - 170	7.5	0	0	0	0
Cold rolled	R500	500 - 590	450	410	15	22	160 - 190	7.5	0	0	0	0
Cold rolled	R560	560 - 650	520	490	10	15	180 - 210	7.5	0	0	0	0
Cold rolled	R640	640 - 730	590	570	5	12	200 - 230	7.5	0	0	1	0.5
Cold rolled	R720	min. 720	650	620	1	4	min. 210	7.5	-	1	-	-

^{*}Reference values at room temperature

^{**}Between 20 and 300 °C

^{***} Values for the lowest temper class

 $r = x \cdot t$ (strips up to t = 0.50 mm)

Sample width = 10 mm / bending at smaller bending widths on request (Evaluation according to page 5.4.2. of Hand-Out)

 $^{^{3\,)}}$ valid only as thermal stress relieved qualities

⁴⁾ Thermal stress relieved

	Application Range	
Contact springs; connectors; mer	mbranes; switch elements; fixed con	tacts. Ultra-high strength spring elements.
	Physical Properties	
Density *	g/cm³	8.8
Thermal conductivity *	W/(m·k)	67
Electr. conductivity ***	MS/m	6.5
Electr. conductivity ***	IACS (%)	11
Thermal expansion c. **	10 ⁻⁶ K	18.5
Modulus of elasticity *	GPa	115

			Ch	emica	al Posit	ion (ı	eference va	lue)%				
Cu	Rest	P			0.01 -	0.4						
Sn	7.5 - 8.5											
Condition	Temper	Tensile strength		eld ngth	Elong	ation	Hardness	Electr. conductivity		Bendabilit		2) 3)
	ciass	T.S.	Rp	Rp _{0.2}		50	(reference		St	Strip thicknes		mm
		min max.	m	in.	m	in.	value)			R	/t	
		MPa	М	Pa	9	6	HV	MS/m		GW		3W
			3)	4)	3)	4)				Thermal		Thermal
									Stretch		Stretch	
									leveled	relieved	leveled	relieved
Cold rolled	R370	370 - 450	max	. 300	5	0	80 - 120	6.5	0	0	0	0
Cold rolled	R450	450 - 550	370	350	28	35	120 - 175	6.5	0	0	0	0
Cold rolled	R540	540 - 630	460	440	22	27	170 - 200	6.5	0	0	0	0
Cold rolled	R600	600 - 690	520	480	16	20	180 - 220	6.5	0	0	1	0
Cold rolled	R660	660 - 750	600	580	10	14	210 - 240	6.5	0	0	3	2
Cold rolled	R740	740 - 810	680	660	5	8	220 - 260	6.5	-	2	i	3
Cold rolled	R800 ⁵⁾	800 - 930	720	700	-	4	230 - 290	6.5	-	-	-	-
Cold rolled	R850 ⁵⁾	min. 850	-	800	-	1.5	min. 240	6.5	-	-	-	-

On request in fine grain size version

^{*}Reference values at room temperature

^{**}Between 20 and 300 °C

^{***} Values for the lowest temper class Sample width = 10 mm / bending at smaller bending widths on request (Evaluation according to

 $r = x \cdot t$ (strips up to t = 0.50 mm)

page 5.4.2. of Hand-Out)

⁴⁾ Thermal stress relieved 5) Thickness range: 0,15 - 0,60 mm

³⁾ valid only as thermal stress relieved qualities

3.13 CuSn3Zn9 / CuSn2Zn10 - C42500 - CW454K

	Application Rang	e							
Good compromise between alloy properties, lower metall cost and better scrap value assessment conditions.									
Physical Properties									
Density *	g/cm³	8.75							
Thermal conductivity *	W/(m·k)	120							
Electr. conductivity ***	MS/m	14							
Electr. conductivity ***	IACS (%)	24							
Thermal expansion c. **	10 ⁻⁶ K	18.4							
Modulus of elasticity *	GPa	126							

	Chemical Position (reference value)%										
	CuSn3Zn9 - CW 454	1K			CuSn3Zn1	10 - C42500					
Cu	Rest		Cu		87 -90						
Sn	1.5 - 3.5		Sn		1.5 - 3.0						
Zn	7.5 - 10		Zn		Rest						
	Temper Tensile	Yield			Electr.						

Condition	Temper class	Tensile strength	Yield strength	Elong	ation	Hardness	Electr. conductivity	Bendability		Bendability	
	0.033	T.S.	Rp _{0.2}	_	50	(reference		R/t ^{1) 2) 3)}		R/t 1) 2) 3)	
		min max.	min.	m	in.	value)		9	90°		80°
		MPa	MPa	9	%	HV	MS/m	GW	BW	GW	BW
			() only					Strip	Strip	Strip	Strip
			information					thickness	thickness	thickness	thickness
								≤0.5mm	≤0.5mm	≤0.5mm	≤0.5mm
Cold rolled	R320	320 - 380	max. 230	2	.5	80 - 100	14	0	0	0	0
Cold rolled	R380	380 - 430	(200)	16	20 ³⁾	110 - 140	14	0	0	0.5	1
Cold rolled	R430	430 - 520	(330)	6	10 ³⁾	140 - 170	14	0	0	1	1.5
Cold rolled	R510	510 - 600	(430)	3	8 3)	160 - 190	14	0	1	2	2.5
Cold rolled	R580	580 - 690	(520)	1	-	180 - 220	14	1	2	2.5	4
Cold rolled	R660	min. 660	(610)	1	-	min. 200	14	-	-	-	-

^{*}Reference values at room temperature

^{**}Between 20 and 300 °C

^{***} Values for the lowest temper class

 $r = x \cdot t$ (strips up to t = 0.50 mm)

²⁾ Sample width = 10 mm / bending at smaller bending widths on request (Evaluation according to page 5.4.2. of Hand-Out)

 $^{^{\}rm 3)}$ valid only as thermal stress relieved qualities

4.1 Overview of High Performance Alloy

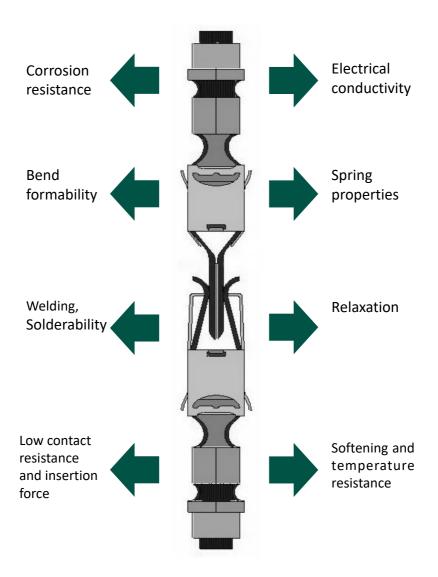
Page	ASTM	DIN EN	Application
4.6	C19010	CuNiSi	Hardenable Cu-Ni-Si alloy preferred in automotive, electrical and electronic industries. The alloy is especially suitable for components with middle level strength requirements (up to 620 MPa) in combination with good electrical conductivity and resistance to relaxation.
4.7	C19005 (C19002) ****	CuNiSi	Modified C19005 (Cu-Ni-Si) alloy, as a tinned version, which has reduced peeling-off effects depending on the conditions of use
4.8	C70250	CuNi3Si	Connectors, bent parts, relays
4.90	C70310	CuNiSi	Hardenable, higher alloyed Cu-Ni-Si alloys for high strength requirements up to 800 MPa in combination with good electrical conductivity, bendability and for the Cu-Ni-Si alloys typical good relaxation resistance. Partly suitable as substitution for beryllium alloys. Good resistance against stress corrosion cracking.
4.10	C14410	CuSn	Current carrying springs, blade contacts, relay boxes, busbars; very good scrap conditions of tinned scrap, advantageous price.
4.11	C14415	CuSn	Current carrying springs, blade contacts, relay boxes, busbars; very good scrap conditions of tinned scrap, advantageous price. International version of C14410
4.12	C18665	CuMg	Connectors for automotive, electric and electronic applications, relais, current carrying springs, busbars and relay boxes with spring properties; combined high electrical conductivity at highest strength and relaxation resistance; excellent bending at middle strength.
4.13	C19400	CuFe2P	Hardenable Cu-Fe alloy with good electrical conductivity for components with low and medium strength requirements. "Senior" (oldest) special alloy. Good resistance against relaxation. Classical material for terminals, lead-frames and power transistors.
4.14	C42400		This is a multi-mechanism synergistic strengthened alloy in the Cu-Zn-Sn alloy system. Ni, Si and other elements are added to achieve composite precipitation strengthening which allows the material to obtain good bending characteristics and stress relaxation resistance. This alloy are the best in terms of comprehensive cost performance compared with bronze and C19005
4.1	C #		# # ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '
4.16	C64750		in theelectronics sector, its excellent conductivity and corrosion resistance make it ideal for manufacturing connection components such as integrated circuit lead frames, ensuring efficient and stable signal transmission in complex operating environments. In automotive manufacturing, its superior thermal conductivity supports applications in cooling and electrical systems.

^{****} Deviation in the chemical composition

4.2 Chemical Composition

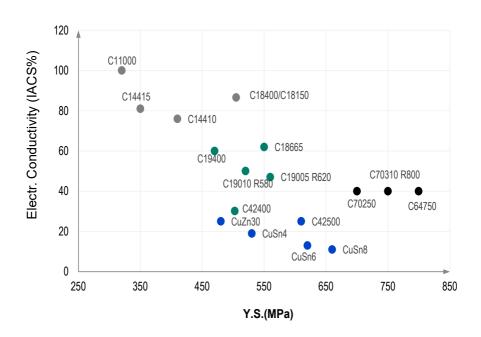
Page	Alloy	Cu (%)	Cr (%)	Fe (%)	Mg (%)	Ni (%)	Ag (%)	Sn (%)	Si (%)	Zn (%)	Zr (%)	P (%)	Other (%)
4.6	C19010	Rest				0.8-			0.15- 0.35				max. 0.8
4.7	C19005	Rest				1.4- 1.7		0.02- 0.3	0.2- 0.35	0.20- 0.70			max. 0.5
4.8	C70250	min. 96.2			0.05- 0.30	2.2- 4.2			0.25- 1.2				Rest
4.9	C70310	Rest				1.0- 4.0		max. 1.00	0.08- 1.00	max. 2.00			max. 0.5
4.10	C14410	min.99.90 incl. Ag+Sn						0.10- 0.20					max. 0.1
4.11	C14415	min.99.6 incl. Ag+Sn						0.10- 0.15					max. 0.1
4.12	C18665	min. 99.0			0.4- 0.9								
4.13	C19400	Rest		2.1- 2.6						0.05- 0.20			max. 0.2
4.14	C42400	87-91	0.1- 0.5			0.5- 1.5		0.05- 0.5	0.1- 0.	Rest	0.05- 0.		
4.15	C18400/ C18160	Rest incl. Ag+Sn	0.2- 1.2	max. 0.1					max. 0.1		0.05- 0.25		max. 0.3
4.16	C64750	Rest		max. 1.0	max. 0.1	1.0- 3.0		0.05- 0.8	0.1- 0.7	max. 1.0	max. 0.1	max. 0.1	

4.3 Physical Properties



Page	Alloy	Density*	Therm. expansion coefficient **	Thermal conductivity	Electr. Conductivity ***	Electr. Conductivity ***	Modulus of elasticity *
		g/cm³	10 ⁻⁶ K	W/(m·K)	MS/m	IACS (%)	GPa
4.6	C19010	8.9	16.8	260	35 / 29	60 / 50	135
4.7	C19005	8.9	16.8	260	33 / 27	57 / 47	135
4.8	C70250	8.8	17.6	190	23	40	130
4.9	C70310	8.85	17	185	25 / 23	43 / 40	132
4.10	C14410	8.9	17.3	330	44	76	120
4.11	C14415	8.9	18	350	47	81	120
4.12	C18665	8.8	17.3	270	34	58	130
4.13	C19400	8.9	16.3	260	35	60	125
4.14	C42400	8.8			17-20	30 / 36	120
4.15	C18400/ C18160	8.9	18.6	330	50	86	137
4.16	C64750	8.8	17	182	23.2	40	130

^{*} Reference values at room temperature ** Between 20 and 300 °C

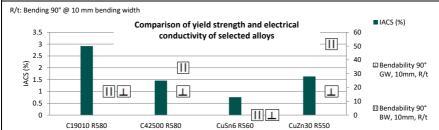

^{***} Values for the lowest temper class

4.4 Alloy Consideration for Connectors and Electro-mechanical Components

4.5 Segmentation of Selected Alloys

Segment A
Basic applications
= Low conductivity,
medium to exceptional strength

Segment B
Electronics applications
= Medium conductivity,
medium to high strength


Segment C
Automotive applications
= Medium conductivity,
medium to high strength

Segment D
Electric vehicles and highvoltage applications
= Low to medium strength, high
conductivity

Hardenable Cu-Ni-Si alloy preferred in automotive, electrical and electronic industries. The alloy is especially suitable for components with middle level strength requirements (up to 620 MPa) in combination with good electrical conductivity and resistance to relaxation.

	Physical Propertie	s	
Density *	g/cm³	8.9	
Thermal conductivity *	W/(m·k)	260	
Electr. conductivity ***	MS/m	35/29	
Electr. conductivity ***	IACS (%)	60/50	
Thermal expansion c. **	10 ⁻⁶ K	16.8	
Modulus of elasticity *	GPa	135	

Cu Rest Other max. 0.8 Ni 0.8 - 1.8 Si 0.15 - 0.35
Cu Rest Other max. 0.8
Chemical Position (reference value) %

Condition	Temper class	Tensile strength	Yield strength	Elong	gation	Hardness	Electr. conductivity	Benda	Bendability		ability
		T.S.	Rp _{0.2}	А	50	(reference		R/t	R/t 1)		1)
		min max.	min.	m	in.	value)		90°		18	80°
		MPa	MPa		%	HV	MS/m	GW	BW	GW	BW
								Strip	Strip	Strip	Strip
								thickness	thickness	thickness	thickness
								≤0.5mm	≤0.5mm	≤0.5mm	≤0.5mm
	R360	360 - 430	300	12	14 ³⁾	100 - 130	35	0	0	0	0
	R410	410 - 470	360	9	11 ³⁾	125 - 155	35	0	0	0.5	1
Cold rolled	R460	460 - 520	410	7	9 ³⁾	135 - 165	35	0.5	1	1.5	3
	R520	520 - 580	460	5	7 ³⁾	145 - 175	35	1	2	2.5	4
	R580	580 - 650	520		9	160 - 210	29	1	1	3	5

^{*}Reference values at room temperature

^{**}Between 20 and 300 °C

^{***} Values for the lowest temper class

 $r = x \cdot t$ (strips up to t = 0.50 mm)

²⁾ Sample width = 10 mm / bending at smaller bending widths on request (Evaluation according to page 5.4.2. of Hand-Out)

³⁾ valid only as thermal stress relieved qualities

4.7 C19005 (C19002)****

Application Range

Modified Cu-Ni-Si alloy, which in tinned version does not exhibit peeling-off of the coating during long-time temperature exposure of up to 130°C. The further material characteristics are mostly identical to those of C19010 with the exception of electrical conductivity, which is slightly lower.

	Physical Properties									
Density *	g/cm³	8.9								
Thermal conductivity *	W/(m·k)	260								
Electr. conductivity ***	MS/m	33/27								
Electr. conductivity ***	IACS (%)	57/47								
Thermal expansion c. **	10 ⁻⁶ K	16.8								
Modulus of elasticity *	GPa	135								

Chemical Position (reference value) %

Cu		Rest		Sn			0.02 - 0.3				
Ni		1.40 - 1.70			Zn		0.20 - 0.70				
Si		0.2 - 0.35			Other		max. 0.5				
Condition	Temper class	Tensile strength	Yield strength	Elongation		Hardness	Electr. conductivity	Benda	ability	Bendability	
		T.S. min max.	Rp _{0.2} min.		.50 nin.	(reference value)			R/t ^{1) 2)} 90°		1) 2) 30°
		MPa	MPa		%	HV	MS/m	GW	BW	GW	BW
								Strip	Strip	Strip	Strip
								thickness	thickness	thickness	thickness
								≤0.5mm	≤0.5mm	≤0.5mm	≤0.5mm
	R360	360 - 430	300	12	14 ³⁾	100 - 130	33	0	0	0	0.5
Cold rolled	R410	410 - 470	360	9	11 ³⁾	125 - 155	33	0	0.5	0.5	1
Cold Tolled	R460	460 - 520	410	7	9 ³⁾	135 - 165	33	0.5	1	1.5	3
	R520	520 - 580	460	5	7 ³⁾	145 - 175	33	1	2	2.5	4
	R530 ⁴⁾	530 - 630	430		14	150 -190	27	0	0	1	2
Precipitation	R580	580 - 660	540		8	170 - 210	27	1	1	3	5
hardened	R580 S	580 - 660	520		9	170 - 210	27	1	1	2	3
ĺ	R620 ⁵⁾	620 - 700	560		7	180 - 210	27	1	1.5	3	5

^{*}Reference values at room temperature

 $r = x \cdot t$ (strips up to t = 0.50 mm)

^{***} Values for the lowest temper class **Between 20 and 300 °C

²⁾ Sample width = 10 mm / bending at smaller bending widths on request (Evaluation according to page 5.4.2. of Hand-Out)

³⁾ valid only as thermal stress relieved qualities

⁴⁾ Thickness on request

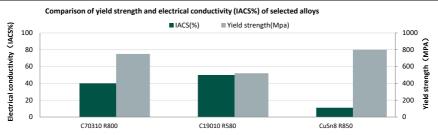
⁵⁾ Thickness range: 0,15 - 0,60 mm

^{****} Deviation in the chemical composition

			qΑ	plication Ran	ge					
			-	ors, bent part	-					
Physical Properties										
	Density	*	,	g/cm ³			8.8			
Thermal co	nductivity	*		W/(m·k)			190			
Electr. co	nductivity	***		MS/m			23			
Electr. co	nductivity	***		IACS (%)			40			
Thermal ex				10 ⁻⁶ K			17.6			
Modulus o				GPa			130			
□ 100 T				St	ress relax	ation of C70	0250 R6	20 –		
% 90 -	-							→		
5 80 -	-							_		
<u>so</u> 70 -										
: 60 −										
Remaining stress(%) - 06 - 09 - 06 - 09 - 09 - 09 - 09 - 09		— 1	25 °C - ■	⊢ 150 °C	<u>→</u> 200 °C	•				
_	1	1	1	1	1	1	1			
0	100	200		00 500	600	700 800	900	1000		
			EX	posure time	(n)					
		Cl	nemical Posit	tion (refere	nce value)	%				
Cu	min. 96.2		Si	0.25 - 1.2		Other	Rest			
Ni	2.2 - 4.2		Mg	0.05 - 0.30						
	Temper	Tensile	Yield			Electr.				
Condition	class	strength	strength	Elongation	Hardness	conductivity		ability		
		T.S.	Rp _{0.2}	A50	(reference		R/t 1	.) 2) 3)		
		min max.	min.	min.	value)			0°		
		MPa	MPa	%	HV	MS/m	GW	BW		
			() only				Strip	Strip		
			information				thickness	thickness		
							≤0.5mm	≤0.5mm		
Cold rolled	R620	620 - 760	500	10	180 - 240	23	0	0		
Cold rolled	R655	655 - 825	585	7	190 - 250	23	1	1		
Cold rolled	R690	690 - 860	655	5	220 - 260	23	1.5	1.5		
Cold rolled	R750	750 - 860	700	4	230 - 260	23	2	2		

^{*}Reference values at room temperature **Between 20 and 300 °C

^{***} Values for the lowest temper class


 $r = x \cdot t$ (strips up to t = 0.50 mm)

 $^{^{2\,)}}$ Sample width = 10 mm $\,$ / bending at smaller bending widths on request (Evaluation according to page 5.4.2. of Hand-Out)

Hardenable, higher alloyed Cu-Ni-Si alloys for high strength requirements up to 800 MPa in combination with good electrical conductivity, bendability and for the Cu-Ni-Si alloys typical good relaxation resistance. Partly suitable as substitution for beryllium alloys. Good resistance against stress corrosion cracking.

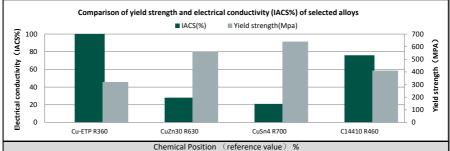
Physical Properties							
Density *	g/cm³	8.85					
Thermal conductivity *	W/(m⋅k)	185					
Electr. conductivity ***	MS/m	25/23					
Electr. conductivity ***	IACS (%)	43/40					
Thermal expansion c. **	10 ⁻⁶ K	17					
Modulus of elasticity *	GPa	132					

			Che	mical Positio	n (reference v	alue)%	
Cu		Rest		Sn	m	ax. 1.00	
Ni		1.0 - 4.0		Zn	m	ax. 2.00	
Si		0.08 - 1.00		Other	m	ax. 0.5	
	Tompor	Toncilo	Viold			Flooty	

Condition	Temper class	Tensile strength	Yield strength	Elon	gation	Hardness	Electr. conductivity		ability		ability
		T.S.	Rp _{0.2}	Α	\50	(reference		R/t	1) 2)	R/t	1) 2)
		min max.	min.	n	nin.	value)		9	0°	18	80°
		MPa	MPa		%	HV	MS/m	GW	BW	GW	BW
								Strip	Strip	Strip	Strip
								thickness	thickness	thickness	thickness
								≤0.5mm	≤0.5mm	≤0.5mm	≤0.5mm
	R360	360 - 430	250	14	16 ³⁾	100 - 130	25	0	0	0	0.5
	R410	410 - 470	360	9	12 ³⁾	125 - 155	25	0	0.5	0.5	1
Cold rolled	R460	460 - 520	410	7	10 ³⁾	135 - 165	25	0.5	1	1.5	3
	R520	520 - 580	460	5	8 ³⁾	145 - 175	25	1	2	2.5	3.5
	R580	580 - 650	520	4	6 ³⁾	170 - 200	25	1	2.5	3	5
	R620	620 - 720	540		16	180 - 240	23	0	0	1	1.5
Precipitation	R660	660 - 750	590		10	200 - 250	23	1	1	1.5	2
hardened	R750	750 - 830	680		8	210 - 260	22	2	2	3	4
	R800	>800	750		5	> 210	22	2	3	4	5

^{*}Reference values at room temperature

^{**}Between 20 and 300 °C


^{***} Values for the lowest temper class

 $r = x \cdot t$ (strips up to t = 0.50 mm)

²⁾ Sample width = 10 mm / bending at smaller bending widths on request (Evaluation according to page 5.4.2. of Hand-Out)

 $^{^{3\,)}}$ valid only as thermal stress relieved qualities

	Application Range	e			
Curre	ent carrying springs, blade contacts	s, relay boxes, busbars;			
very g	ood scrap conditions of tinned scr	ap, advantageous price.			
Physical Properties					
Density *	g/cm³	8.9			
Thermal conductivity *	W/(m·k)	330			
Electr. conductivity ***	MS/m	44			
Electr. conductivity ***	IACS (%)	76			
Thermal expansion c. **	10 ⁻⁶ K	17.3			
Modulus of elasticity *	GPa	120			

		Chemical i Ositic	III (Telefelice value
Cu (incl. Ag+Sn)	min. 99.0	Other	max. 0.1
C	0.10 0.20		

Condition	Temper class	Tensile strength	Yield strength	Elongation	Hardness	Electr. conductivity	Bendability		Bendability	
		T.S.	Rp _{0.2}	A50	(reference		R/t	1) 2)	R/t	1) 2)
		min max.	min.	min.	value)		9	0°	18	0°
		MPa	MPa	%	HV	MS/m	GW	BW	GW	BW
				3)			Strip	Strip	Strip	Strip
							thickness	thickness	thickness	thickness
							≤0.5mm	≤0.5mm	≤0.5mm	≤0.5mm
Cold rolled	R250	min. 250	max. 140	20	60 - 85	44	0	0	0	0
Cold rolled	R300	300 - 370	270	10	80 - 110	44	0	0	0	0
Cold rolled	R360	360 - 430	310	7	110 - 130	44	0	0	0.5	1
Cold rolled	R420	420 - 490	370	5	120 - 150	44	1	1	2	2.5
Cold rolled	R460	min. 460	410	4	min. 135	44	1	1.5	2.5	3

^{*}Reference values at room temperature

^{**}Between 20 and 300 °C

^{***} Values for the lowest temper class

 $r = x \cdot t$ (strips up to t = 0.50 mm)

²⁾ Sample width = 10 mm / bending at smaller bending widths on request (Evaluation according to page 5.4.2. of Hand-Out)

³⁾ valid only as thermal stress relieved qualities

^{****} Deviation in the chemical composition

	Application Range				
Current carrying springs, blade contacts, relay boxes, busbars; very good scrap conditions of tinned scrap,					
advantaged	ous price. International version of C1	4410			
Physical Properties					
Density *	g/cm³	8.9			
Thermal conductivity *	W/(m⋅k)	350			
Electr. conductivity ***	MS/m	47			
Electr. conductivity ***	IACS (%)	81			
Thermal expansion c. **	10 ⁻⁶ K	18			
Modulus of elasticity *	GPa	120			

		Cher	mical Position	(reference	value)	%		
Cu (incl. Ag+	Sn)	min. 99.6						
Sn		0.10 - 0.15						
Other		max. 0.1						
	Tomper	Toncilo	Viold				Electr	

Condition	Temper class	Tensile strength	Yield strength	Elongation	Hardness	Electr. conductivity	Bendability	
		T.S.	Rp _{0.2}	A50	(reference		R/t	1) 2)
		min max.	min.	min.	value)		9	0°
		MPa	MPa	%	HV	MS/m	GW	BW
			*				Strip	Strip
							thickness	thickness
							≤0.5mm	≤0.5mm
Cold rolled	R250	250 - 320	200	9	60 - 90	47	0	0
Cold rolled	R300	300 - 370	250	4	85 - 120	47	0	0
Cold rolled	R360	360 - 430	300	3	105 - 135	47	0	0
Cold rolled	R420	420 - 490	350	2	120 - 150	47	1	1

^{*}Reference values at room temperature

^{**}Between 20 and 300 °C

^{***} Values for the lowest temper class

 $r = x \cdot t$ (strips up to t = 0.50 mm)

Sample width = 10 mm / bending at smaller bending widths on request (Evaluation according to page 5.4.2. of Hand-Out)

 $^{^{3\,)}}$ valid only as thermal stress relieved qualities

Connectors for automotive, electric and electronic applications, relais, current carrying springs, busbars and relay boxes with spring properties; combined high electrical conductivity at highest strength and relaxation resistance; excellent bending at middle strength.

Physical Properties							
Density *	g/cm³	8.8					
Thermal conductivity *	W/(m·k)	270					
Electr. conductivity ***	MS/m	34					
Electr. conductivity ***	IACS (%)	58					
Thermal expansion c. **	10 ⁻⁶ K	17.3					
Modulus of elasticity *	GPa	130					

Chemical Position	(reference value)	0/2

Cu (incl. Ag) min. 99.0 Mg 0.4 - 0.9

Condition	Temper class	Tensile strength	Yield strength	Elong	gation	Hardness	Electr. conductivity	Bendability		Bendability	
		T.S.	Rp _{0.2}	A50		reference		R/t 1)		R/t 1)	
		min max.	min.	m	in.	value)		9	0°	180°	
		MPa	MPa		%	HV	MS/m	GW	BW	GW	BW
								Strip	Strip	Strip	Strip
								thickness	thickness	thickness	thickness
								≤0.5mm	≤0.5mm	≤0.5mm	≤0.5mm
	R380	380 - 460	330	14	17 ³⁾	115 - 145	34	0	0	0	0.5
	R460	460 - 520	410	10	12 ³⁾	140 - 165	34	0.5	1	1.5	3
Cold rolled	R520	520 - 570	460	8	10 ³⁾	160 - 180	34	1	2.5	2	5
	R570	570 - 620	500	6	83)	175 - 195	34	2.5	5	3.5	8
	R620 ⁴⁾	min. 620	550	3	4 ³⁾	min. 190	34	3	6	5	10

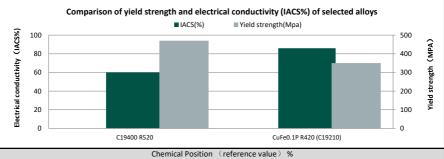
^{*}Reference values at room temperature

^{**}Between 20 and 300 °C

^{***} Values for the lowest temper class

 $r = x \cdot t$ (strips up to t = 0.50 mm)

²⁾ Sample width = 10 mm / bending at smaller bending widths on request (Evaluation according to page 5.4.2. of Hand-Out)


 $^{^{3\,)}}$ valid only as thermal stress relieved qualities

⁴⁾ Thickness on request

Hardenable Cu-Fe alloy with good electrical conductivity for components with low and medium strength requirements. "Senior' (oldest) special alloy. Good resistance against relaxation. Classical material for terminals, lead-frames and power transistors.

Physical Properties								
Density *	g/cm³	8.9						
Thermal conductivity *	W/(m·k)	260						
Electr. conductivity ***	MS/m	35						
Electr. conductivity ***	IACS (%)	60						
Thermal expansion c. **	10 ⁻⁶ K	16.3						
Modulus of elasticity *	GPa	125						

Cu	Rest			Other		max. 0.2				
Fe		2.1 - 2.6								
Zn		0.05 - 0.20								
Condition	Temper class	Tensile strength	Yield strength	Elongation	Hardness	Electr. conductivity	Benda	ability	Benda	ability
		T.S.	Rp _{0.2}	A50	(reference		R/t 1) 2)		R/t 1) 2)	
		min max.	min.	min.	value)		9	o°	18	80°
		MPa	MPa	%	HV	MS/m	GW	BW	GW	BW
				3)			thickness	thickness	thickness	thickness
							≤0.5mm	≤0.5mm	≤0.5mm	≤0.5mm

		min max.	min.	min.	value)		90°		180°	
		MPa	MPa	%	HV	MS/m	GW	BW	GW	BW
				3)			thickness	thickness	thickness	thickness
							≤0.5mm	≤0.5mm	≤0.5mm	≤0.5mm
Cold rolled	R300	300 - 360	max. 240	18	80 - 100	35	0	0	0	0
Cold rolled	R360	360 - 430	270	15	110 - 135	35	0	0	0	0.5
Cold rolled	R420	420 - 480	380	9	130 - 150	35	0.5	0.5	1	1
Cold rolled	R480	480 - 540	430	6	140 - 160	35	1	1	1.5	1.5
Cold rolled	R520	520 - 580	470	4	min. 140	35	2.5	3.5	3	4.5

^{*}Reference values at room temperature

^{**}Between 20 and 300 °C

^{***} Values for the lowest temper class

 $r = x \cdot t$ (strips up to t = 0.50 mm)

Sample width = 10 mm / bending at smaller bending widths on request (Evaluation according to page 5.4.2. of Hand-Out)

 $^{^{\}mbox{\scriptsize 3}\,\mbox{\scriptsize)}}$ valid only as thermal stress relieved qualities

This is a multi-mechanism synergistic strengthened alloy in the Cu-Zn-Sn alloy system. Ni, Si and other elements are added to achieve composite precipitation strengthening which allows the material to obtain good bending characteristics and stress relaxation resistance. This alloy are the best in terms of comprehensive cost performance compared with bronze and C19005

	Physical Properties	
Density *	g/cm³	8.8
Electr. conductivity ***	MS/m	17 - 20
Electr. conductivity ***	IACS (%)	30 - 36
Modulus of elasticity *	GPa	120

		Chemical Pos	ition (reference value)	%	
Cu	87 - 91	Cr	0.1 - 0.5	Zn	Rest
Ni	0.5 - 1.5	Zr	0.05 - 0.2		
Si	0.1 - 0.3	Sn	0.05 - 0.5		

Condition	Temper class	Tensile strength	Yield strength	Elongation	Hardness	Electr. conductivity		ability
		T.S.	Rp _{0.2}	A50	(reference value)		R/t 1	
		min max. MPa	min. MPa	min. %	HV	MS/m	9) GW	BW
				3)			Strip thickness	Strip thickness
							≤0.5mm	≤0.5mm
Cold rolled	R440	460 - 540	430	10	130 - 160	30 - 36	0	0
Cold rolled	R520	520 - 600	500	5	150 - 190	30 - 36	1.5	0.5
Cold rolled	R560	560 - 640	550	3	170 - 210	30 - 36	1	2.5
Cold rolled	R600	600 - 660	590	1	190 - 220	30 - 36	1.5	3.5

^{*}Reference values at room temperature

^{**}Between 20 and 300 °C

^{***} Values for the lowest temper class

 $^{^{1)}}$ r = x · t (strips up to t = 0.50 mm)

Sample width = 10 mm / bending at smaller bending widths on request (Evaluation according to page 5.4.2. of Hand-Out)

4.15 C18400/C18160

Application Range

Cu-Cr alloy with a combination of very high electrical conductivity and very good resistance against relaxation even at 200°C. The alloy is well suited for components needing middle-level strength. Applications are in the field of cell phones, high voltage connectors and photovoltaics.

Physical Properties						
Density *	g/cm³	8.9				
Thermal conductivity *	W/(m·k)	330				
Electr. conductivity ***	MS/m	50				
Electr. conductivity ***	IACS (%)	86				
Thermal expansion c. **	10 ⁻⁶ K	18.6				
Modulus of elasticity *	GPa	137				

Chemical Position (reference value)%										
Cu (incl.	Ag)	rest				Fe	ma	ax. 0.1		
Cr		0.2 -	1.2			Si	m	ax. 0.1		
Zr		0.05	- 0.25			Other	m	ax. 0.3		
Condition	Temper class	Tensile strength	Yield strength	Elongation	Hardness	Electr. conductivity	·		lability	
		T.S.	Rp _{0.2}	A50	(reference	-			R/t 1) 11	
		min max.	min.	min.	value)		9	0°	18	80°
		MPa	MPa	%	HV	MS/m	GW	BW	GW	BW
				3)			Strip	Strip	Strip	Strip
				'			thickness	thickness	thickness	thickness
							≤0.5mm	≤0.5mm	≤0.5mm	≤0.5mm
	R480	480 - 560	450	8	150 - 190	50	1.5	1.5	2	2
Cold rolled	R540	540 - 630	500	4	160 - 200	50	2	2	2.5	3
	R540S	540 - 620	500	8	160 - 200	50	1.5	1.5	2	2.5

^{*}Reference values at room temperature

^{**}Between 20 and 300 °C

^{***} Values for the lowest temper class

²⁾ Sample width = 10 mm / bending at smaller bending widths on request (Evaluation $r = x \cdot t$ (strips up to t = 0.50 mm) according to page 5.4.2. of Hand-Out)

 $^{^{3\,)}}$ valid only as thermal stress relieved qualities

⁴⁾ Thickness on request

Application Range

In the electronics sector, its excellent conductivity and corrosion resistance make it ideal for manufacturing connection components such as integrated circuit lead frames, ensuring efficient and stable signal transmission in complex operating environments. In automotive manufacturing, its superior thermal conductivity supports applications in cooling and electrical systems.

Physical Properties						
Density *	g/cm³	8.8				
Thermal conductivity *	W/(m·k)	182				
Electr. conductivity ***	MS/m	23.2				
Electr. conductivity ***	IACS (%)	40				
Thermal expansion c. **	10 ⁻⁶ K	17				
Modulus of elasticity *	GPa	130				

	Chemical Position (reference value)%									
Cu		Rest		Sn		0.05-0.8	Zr		Max.	0.1
Ni		1.0-3.0		Zn		Max. 1.0	1ax. 1.0 р		Max. 0.1	
Si		0.1-0.7		Fe		Max. 1.0 Mg			Max. 0.1	
Condition	Temper class	Tensile strength T.S. min max. MPa	Yield strength Rp _{0.2} min. MPa	A50 min. %	(reference value) HV	Electr. conductivity MS/m	90 GW Strip thickness	BW Strip thickness	R/t 18 GW Strip thickness ≤0.5mm	0° BW Strip
Cold rolled	R500	500 - 590	450	8	150 - 180	23.2	0	0	0	0.5
Cold rolled	R600	600 - 670	540	8	175 - 200	23.2	0.5	0.5	1	1
Cold rolled	R680	680 - 820	650-800	3	190 - 255	23.2	1	1	2	2

^{*}Reference values at room temperature

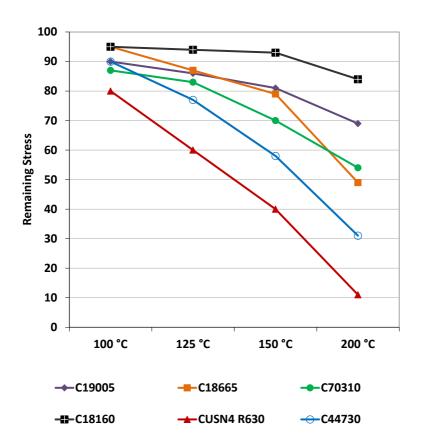
^{**}Between 20 and 300 °C

^{***} Values for the lowest temper class

 $r = x \cdot t$ (strips up to t = 0.50 mm)

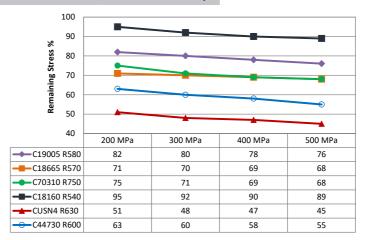
²⁾ Sample width = 10 mm / bending at smaller bending widths on request (Evaluation according to page 5.4.2. of Hand-Out)

³⁾ valid only as thermal stress relieved qualities

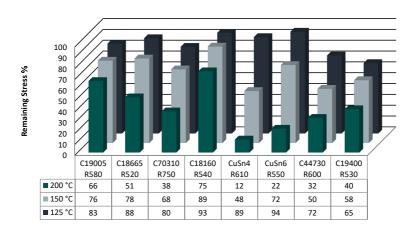

5.1.1 Relaxation Parameter

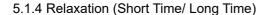
Definition:

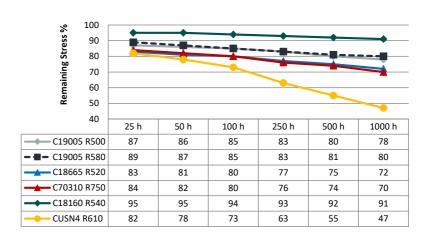
- » Gradual decrease of stress under constant elongation
- » Remaining stress (contact force) which is the result of the loss of initial stress, depending on the test method and conditions
- Methods:
- » Three point bending test
- » Four point bending test
- » Tube bending
- » Cantilever bending test (discontinuous / continuous)
- Test conditions (standard practice):
- » Temperature (100 / 125 / 150 / 200 °C)
- » Time (50 / 100 / 250 / 500 / 1000 / 3000 h)
- » Initial stress (50 or 80 % of yield strength (Rp0,2/Y.S.))

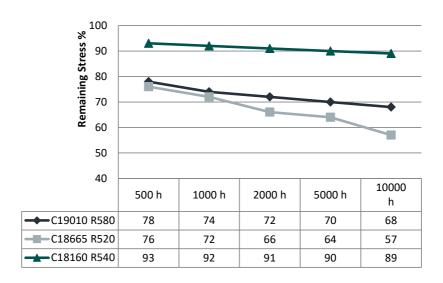


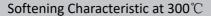
Initial stress 0.5 Rp (0.5 Y.S.); 1000h; bad way

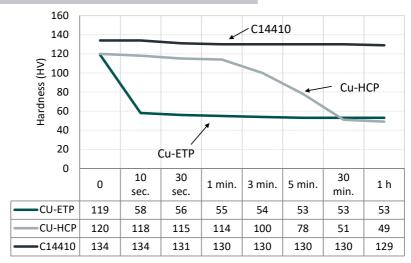



5.1.3 Relaxation (Different Initial Stresses)

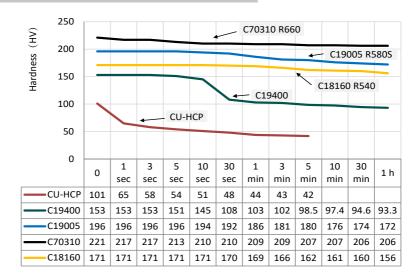

500Mpa/1000hr




Short time: initial stress 400Mpa; 150°C; bad way

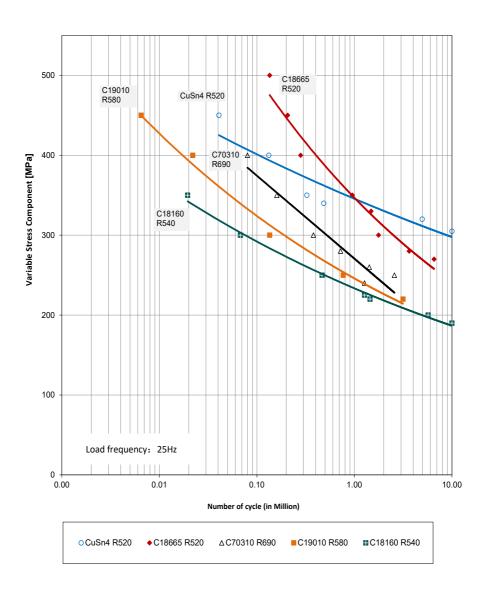


Long time: initial stress 400Mpa; 150°C; bad way

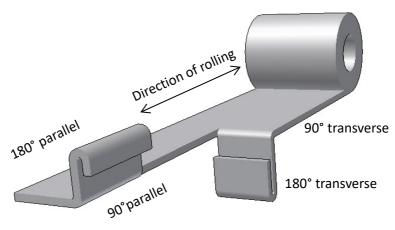


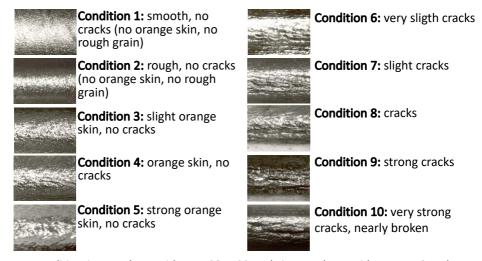
5.2 Softening Characteristic

Softening Characteristic at 500°C



Disclaimer: Due to possible changes and variations in the production process, the information published in the hand-out / brochure / datasheet cannot be guaranteed. The right to changes and modifications in the composition of the products is hereby explicitly reserved, so no warranty claim shall be derived from the information provided.

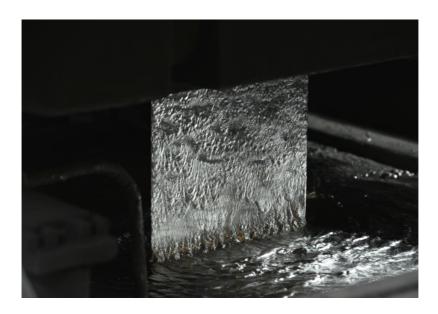

5.2 Important Material Data


5.4 Definition Bending Axle

Parallel = bw (bad way)

Transverse = gw (good way)

Evaluation of Bending


Test condition, in accordance with DIN ISO 7438, scale in accordance with DIN EN 1654 plus addititionally valid for 180° bending.

(sample width = 10 mm, 90 $^{\circ}$ testmethod with V-block and punch, 180 $^{\circ}$ testmethod with 180 $^{\circ}$ bend test machine.)

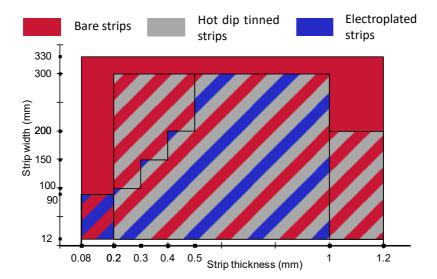
6.1 Reasons for The Hot Dip Tinning

- Good corrosion and oxidation protection
- Formation from an intermetallic phase
- Reduction from insertion and drawing force
- Good solderability
- Good layer adhesion and formability
- Reduced occurrence of tin whisker
- Application of tin-alloys, for example tin-silver
- Efficient and cost-efficient procedure

6.2 Coating Programme

Hot dip tinning acc. to DIN EN 13148 (RoHS conform)

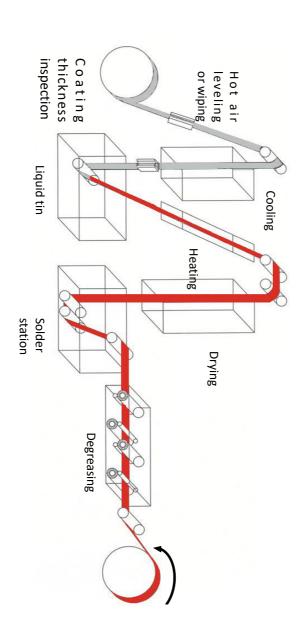
■ Strip thickness: 0.20 – 1.20 mm (Coating thickness for the strip thickness >1.2 mm on request)


■ Strip width: up to 330 mm

■ Coatings: pure tin, tin-silver, Thermic tin

■ Coating thickness*: 1.0 - 3.0 µm

2.0 - 5.0 μm 4.0 - 10.0 μm 10.0 - 20.0 μm


^{*} Max. coating thickness ≤ 2,0 μm on request

Electroplating acc. to DIN EN 14436 (RoHS conform) Provided by KMD outsourcing vendors

6.4 Hot Dip Tinning

Two Methods

By mechanical wiping

■ Hot Air Level Tinning (airknife) (HALT method)

0.8 - 1.5	μm	lowest mating and unmating forces
■ 1.0 – 2.0	μm	reduced mating and unmating forces
■ 1 – 3	μm	standard coating for connectors
■ 2 – 5	μm	good protection against corrosion
■ 4 − 10	μm	good storage and solderability
■ 10 − 20	μm	soldering depot

Other coatings on request

Strip thickness: 0.15 mm – 1.20 mm

Strip width: 10 – 330 mm with untinned edges

Tin Layers

Sn10 - standard tin	standard hot-dip tinning tin layer thickness 1-3 μm; pure tin
Sn11 - thin-prec	reduced mating and unmating forces, reduced fretting corrosion tin layer thickness 0.8-1.5 $\mu m;\ pure\ tin$
Sn12 - Sn Sold	improved solderability tin layer thickness 3-6 μm; pure tin
Sn13 - thermic-tin	lowest mating and unmating forces, abrasion resistant, IMP =
Sn20 - thick-tinning	optimised contacting for the electrical connecting technology tin layer thickness 10-20 $\mu\text{m};$ pure tin
Sn28M - tin-silver	temperature-application > 130 $^{\circ}$ C., improved electrical properties compared to pure tin, compatible to lead-free solder.

(IMP = Inter Metallic Phase)

Test conditions (done with strips or according to connector standard tests)

- Microhardness (by Fischerscope)
- Soldering by dip-test (without aging)
- Mating and unmating force (Tab: CuSn base material; Hot Dipped with pure tin)
- Contact normal force (direct measurement, 10N pre and 7N after stresstest)
- Flectrical stresstest
- » 1. 100 cycles at 6 hours -40° C + 160° C (with voltage)
- » 2. 21 days humid heat (without voltage), after same as 1.
- Electrical Stresstest at 30 Ampere (derating curve)
- Fretting corrosion (length 50 μ m, amount of cycles below Rk < 10 Ω)

Results:

Coating	Pure Tin = Sn10 (C19400)	SnAg = Sn28M (C19010)	100 % IMP = Sn13 (C19010)	
Microhardness	low	high	very high	
Soldertest	good	very good	bad	
Mating and unmating	high	up to 50 % less	up to 60 % less	
Electrical stresstest	bad	very good	good	
	medium	reduced	medium	
Electrical stresstest (30 Amp.)	power dissipation	power dissipation	power dissipation	
. ,	(Derating)	(Derating)	(Derating)	
fretting corrosion	little	considerably better	little better	

6.6 Evaluation of Tinned Surfaces

		Sn11	Sn10	Sn10	Sn10	Sn10	Sn28M	Sn13 *
	Requirement	thin-prec	pure tin	pure tin	pure tin	pure tin	tin-silver	thermic- tin
		0.8 - 1.5 μ m	1 - 2 μm	1 - 3 μm	2 - 5 μm	4 - 10 μm	1 - 3 μm	0.8 - 1.5 μ m
micro hardness	high	2	2-3	3	3-4	4	2	1
mating and unmating forces	low	1-2	2	2-3	3	4	2	1
number of mating	high	3	3	3	2-3	2	2-3	1
abrasion	low	2	2	2-3	3	4	2	1
coefficient of friction	low	2	2-3	2-3	3	3-4	3	1
fretting corrosion	low	2-3	2-3	2-3	3	4	2	2
bendability	small radius	3	2-3	2-3	2	2	2	4
contact resistance	minimum	2	2	2	2	2	1	2
corrosion resistance		2	2	1-2	1-2	1	2	3
whisker resistance	none	2	2	2	2	2-3	1	2
solderability	good	3	3	2-3	2	1	2	4
softening resistance	high	2-3	3	3	3-4	4	2	1

^{1 =} very good 2 = good 3 = suitable 4 = less suitable

^{*} Interconnection of male- and female- Terminal on basis soft/hard

6.7 General information about the surface protection

Period of storage

Bare Strips

Degree of protection max. period of storage

Passivator: benzotriazole: 3 months

Tinned bands (Hot Air Level Tinning)

Degree of protection maximum storage ***

Tinning max. 6 months zinc-bearing base material

max. 6 months thin coating layer like 0.8-1.5μm and 1-2μm

max. 12 months low-alloyed copper materials

max. 12 months bronze material (CuSnXX)

Reference:

In principle the details of the chemical composition of the tin layer relate exclusively to the bath composition of the molten tin crucible. Characteristic of the structure of a molten tin layer are the phases: Pure tin, Cu6Sn5 and Cu35n, whose chemical composition inevitably deviates from the tin crucible.

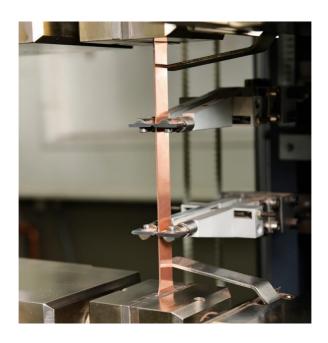
^{*} Storage conditions: 18-20°C and max. 60% relative humidity

^{**} Storage conditions: 18-20°C and max. 60% relative humidity. Different storage conditions can modify and product characteristics. For example the solderability can be reduced

^{***} Maximum storage includes the period that stays in KMD inventory

7.1 The Normal Force and Its Influence Factors

The normal force and its influence factors



- fretting force
- mating and unmating force
- contact spring force
- fixing force in the plastic box
- contact spring force

Influence the normal force

- number of matings
- initial stress
- spring deflection
- scragging
- relaxation

8.1 Selection Guide for Alloys and Layers

Requirement Base material: Cu	Property	Proposal
Strength and	Tensile Strength and	C19005, C18665, C70310, C18160,
high contact force	Modulus of Elasticity	C51900, C52100, C70250
Maintain a low	Relaxation and	Precipitation hardened qualities of
contact resistance	Corrosion resistance	C19005, C70310, C18160
Form / bend parts	Bendability	C19005, C18665, C70310, C51900, C52100, C70250
Avoid temperature increase	Electrical Conductivity	C18665, C14410, C18160
Dissipate heat	Thermal Conductivity	C18665, C14410, C18160
No decrease of hardness due to heat	Softening Temperature	C19005, C70310, C18160, C70250
Surfaces:		
Low insertion force and withdrawal forces	Thinner layers, harder tin	Sn11, Sn13, Sn28M
High temperature use	Thermal stability	Sn13, Sn28M
Solderability, assemble to PCB	Solderability	Sn28M

Chinese Factory

Henan KMD Advanced Materials and Technology Co., Ltd.

No. 282 West Renmin Road Xinxiang, Henan Peoples' Republic of China Phone: +86 2164478680 info-china@kmdgroup.com

Hong Kong Sales KMD (HK) Trading Co., Ltd.

42/F Central Plaza, 18 Harbour Road Wanchai, Hong Kong, China Phone: +852 25931560 info-hongkong@kmdgroup.com

Asia Pacific Sales Headquater Henan KMD Advanced Materials and Technology Co., Ltd. Shanghai Branch

Manpo International Business Center, Room 310B XinHua Road 644, Changning District, Zip 200052, Shanghai, China Phone: +86 2164478680

Phone: +86 2164478680 info-china@kmdgroup.com