

TECHNICAL HANDBOOK

STRIPS OF COPPER AND COPPER ALLOY BARE AND TINNED

HIGH PERFORMANCE

KMD Precise Copper Strip (Henan) Co., Ltd.

TINNED STRIPS

BARESTRIPS

KMD Technical Marketing Team is proud to announce that the new version of KMD Technical Manual is now available!

The Manual covers all products and services globally offered by KMD. It exposes all grades of high performance copper alloys and standard copper alloys with details and charts on mechanical properties, chemical composition and much more. The Manual is enriched with key data and charts on stress relaxation resistance, bend fatigue and other criticalto-quality features of connector strips. KMD Technical Manual is an indispensable tool for connector designers, materials engineers and procurement personnel in automotive, electronic, data communications and electrical industries.

KMD Technical Manual is now available in 2 versions:

Chinese and English. Please book your copy now by contacting KMD team at the following email address:

info-china@kmdgroup.com

KMD Technical Marketing team of metal scientists and application engineers. They support customers to choose the best technical solutions, to solve performance challenges and to save costs. Please contact KMD anytime if you would like to book a consultancy with one of our Technical Marketing Engineers.

Overview

1. KMD Group

- 1.1 KMD in short
- 1.2 KMD's locations

2. Manufacturing Programme of KMD

- 2.1.1 Manufacturing programme
- 2.1.2 Manufacturing programme (Tolerances)
- 2.2.1 Multilayer
- 2.2.2 Multilayer

3. Standard Alloys

- 3.1 Overview of standard alloys
- 3.2 Chemical composition
- 3.3 Physical properties
- 3.4 Cu-ETP C11000 CW004A
- 3.5 CuZn30 C26000 CW505L
- 3.6 CuZn33 C26800 CW506L
- 3.7 CuZn36 C27000 CW507L
- 3.8 CuZn37 C27200 CW508L
- 3.9 CuSn4 C51100 CW450K
- 3.10 CuSn5 C51000 CW451K
- 3.11 CuSn6 C51900 CW452K
- 3.12 CuSn8 C52100 CW453K
- 3.13 CuSn3Zn9/CuSn2Zn10 -C42500 - CW454K

4. High Performance Alloys

- 4.1 Overview of HPAs
- 4.2 Chemical composition
- 4.3 Physical properties
- 4.4 Alloy consideration for connectors and electro-mechanical components
- 4.5 Segmentation of selected alloys
- 4.6 C19010
- 4.7 C19005 (C19002)****
- 4.8 C70250
- 4.9 C70310
- 4.10 C14410 CW117C****
- 4.11 C14415 CW117C
- 4.12 C18665
- 4.13 C19400

6.3 Hot dip tinning facility

6.4 Hot dip tinning

5. Important Material Data

5.1.1 Relaxation parameter

5.1.2 Relaxation (100-200°C)

5.4 Definition bending axle

6.2 Coating programme

5.1.3 Relaxation (different initial stresses)

5.2 Softening characteristic at 300°C / 500°C

5.1.4 Relaxation (short time/ long time)

5.3 Bend fatigue at room temperature

6.5 Tin layers

6. Hot Dip Tinning

6.6 Evaluation of tinned surfaces

6.1 Reasons for the hot dip tinning

6.7 General information about the surface protection

7. Principle Characteristics for Connector Design

7.1 The normal force and its influence factors

8. Summary

8.1 Selection guide for alloys and layers

****Deviation in the chemical composition

1.1 KMD in Short

KMD Group is a global producer of high quality copper and copper alloy strips used in particular for electric and electronic connector applications.

We produce a wide range of copper alloys specifically tailored to the requirements of connector manufacturing, electrical and electronic components, and other high-end applications.

KMD Group was wholly acquired by Golden Dragon Group on May 31, 2023. Golden Dragon Group is a leader in China's copper processing industry, with three business units of copper tube, copper strip and copper wire, and several factories in the United States, Mexico and China.

KMD is committed to becoming the world's leading producer of high-quality strips for numerous connector market segments. KMD is a customer-centric main supplier of high-quality connector strip. We have long-term relationships with leaders and innovation drivers in the global connector industry.

Our high-performance alloy strips are popular all over the world.

The KMD website, now available in Chinese and English, caters to the requirements of the entire customer base: from providing up-to-date metal price information for centralized sourcing and individual purchases, to allowing designers and technicians to retrieve up-to-date product data sheets.

Welcome to visit our website

www.kmdgroup.com\en

EN

www.kmdgroup.com

Disclaimer: Due to possible changes and variations in the production process, the information published in the hand-out / brochure / datasheet cannot be guaranteed. The right to changes and modifications in the composition of the products is hereby explicitly reserved, so no warranty claim shall be derived from the information provided.

1.1 KMD Group

1.2 KMD's Location

Hong Kong JV HQ KMD (HK) Holdings Ltd.

35/F Central Plaza, 18 Harbour Road, Wanchai, Hong Kong Peoples' Republic of China Phone: +852 25931560 info-hongkong@kmdgroup.com

Chinese Factory

KMD Precise Copper Strip (Henan) Co., Ltd.

No. 282 West Renmin Road Xinxiang, Henan Peoples' Republic of China Phone: +86 2164478680 info-china@kmdgroup.com

Asia Pacific Sales Headquater

KMD Precise Copper Strip (Henan) Co., Ltd. Shanghai Branch

Manpo International Business Center, Room 310A, XinHua Road 644, Changning District, Zip 200052, Shanghai Peoples' Republic of China Phone: +86 2164478680 info-china@kmdgroup.com

Disclaimer: Due to possible changes and variations in the production process, the information published in the hand-out / brochure / datasheet cannot be guaranteed. The right to changes and modifications in the composition of the products is hereby explicitly reserved, so no warranty claim shall be derived from the information provided.

1.2 KMD Group

2.1.1 Manufacturing Programme

Other thicknesses and widths upon request

Bare strips

Pre-tinned strips Hot dip tinned Electrolytic tinned

Special qualities

Narrow tolerances Stress levelled Stress annealed

Traverse wound strips

Drum weight (kg) 300-1500 Strip width (mm) 20 - 35 Strip thickness (mm) 0.25 - 0.60 Wooden, plastic and metal drums Flange less

Multilayer

Strip thickness (mm) 0.15-0.80 Strip width (mm) 15-50 Max. pallet weight (kg) 2500* * Higher pallet weight on request

Width Tolenrance Standard									
Strip Thickness	Strip Width (mm)								
(mm)	12-50	51-100	101-200	201-330					
0.08 - 1.00	+ 0.20	+ 0.30	+ 0.40	+ 0.60					
1.01 - 1.50	+ 0.30	+ 0.40	+ 0.50	+ 1.00					

Width Tolenrance Precision									
Strip Thickness (mm)	Strip Width (mm)								
	12-50	51-100	101-200	201-330					
0.08 - 1.00	+ 0.10	+ 0.20	+ 0.30	+ 0.40					
1.01 - 1.50	+ 0.20	+ 0.20	+ 0.40	+ 0.60					

Strip Thickness	Thickness Tolerance					
(mm)	Standard	Precision				
0.08 - 0.20	± 0.005	± 0.004				
0.21 - 0.30	± 0.007	± 0.005				
0.31 - 0.40	± 0.015	± 0.006				
0.41 - 0.50	± 0.015	± 0.008				
0.51 - 0.60	± 0.017	± 0.010				
0.61 - 0.70	± 0.020	± 0.010				
0.71 - 0.85	± 0.022	± 0.012				
0.86 - 1.20	± 0.025	± 0.015				
1.21 - 1.50	± 0.030	± 0.020				

Disclaimer: Due to possible changes and variations in the production process, the information published in the hand-out / brochure / datasheet cannot be guaranteed. The right to changes and modifications in the composition of the products is hereby explicitly reserved, so no warranty claim shall be derived from the information provided.

2.1.2 Manafucturing programme of KMD

2.2.1 Multilayer

The economical coil of Copper, Bronze and High Performance Alloys. Multilayer is a system where several large pancake coils are joined together by resistance welding and supplied palletised for use on pallet de-coilers.

The coil ends are joined by welding the outer to outer and inner to inner ends, forming one continous strip. The multilayer is then unreeled in the opposite direction during processing.

Multilayer

Delivery format:	
Height of pallet:	max. 490 mm
Circular pallet ø:	max. 1,600 mm
Minimum order quantity:	min. 1,000 kg
Pallet weight:	max. 2,500 kg *
Outer diameter ø:	max. 1,500 mm
lan an diamatan d 200 mm fan thialmaan	0.15 0.40 mm
inner diameter Ø 300 mm for thickness:	0.15 - 0.40 mm
Inner diameter ø 400 mm for thickness:	0.15 - 0.80 mm

15-50

0.15-0.80

* Higher pallet weights on request

Standard width (mm):

Standard thickness (mm):

2.3. 2 Multilayer

Your advantage:

Increased efficiency = increase of the productivity = cost savings

when processing KMD alloys.

The use of multilayer optimises production, reduces coil changes and labour costs and keeps scrap to the minimum.

Potential savings using multilayer Example for strip dimension: 0. 25 x 25 mm = 12 Single coils

Strip material up to 44 m strip

Tooling time

up to 165 minutes longer machine running capacity, through multilayer in comparison to 12 single coils, without stamping starts of single coils
 productivity increase of approx. 13 %.

Tool capacity ■ up to 25 % less tooling breaks caused by starting single coils.

De-coiler system of KMD own machinery manufacture

customer designed conception

reduction of investment spending by customer-orientated accounting system

3.1 Overview of Standard Alloy

Page	ASTM	DIN-EN	CEN	Application
3.4	C11000	Cu-ETP	CW 004 A	Basic material for electrical parts.
3.5	C26000	CuZn30	CW 505 L	
3.6	C26800	CuZn33	CW 506 L	Basic material for electrical components, installation parts
3.7	C27000	CuZn36	CW 507 L	content proportionally reduces metall costs.
3.8	C27200	CuZn37	CW 508 L	
3.9	C51100	CuSn4	CW 450 K	
3.10	C51000	CuSn5	CW 451 K	Contact springs; connectors; membranes; switch elements;
3.11	C51910	CuSn6	CW 452 K	fixed contacts. Ultra-high strength spring elements.
3.12	C52100	CuSn8	CW 453 K	
3.13	C42500	CuSn3Zn9 - CuSn2Zn10	CW454K	Good compromise between alloy properties, lower metal cost and better scrap value assessment conditions.

The KMD alloys are RoHS conform.

Page	Alloy	Cu (%)	0 (%)	P (%)	Zn (%)	Ni (%)	Sn (%)	Fe (%)	Mn (%)	Si (%)	Mg (%)	Zr (%)	Other (%)
3.4	Cu-ETP-C11000	99.9	≪ 0.040										
3.5	CuZn30-C26000	69-71			Rest	max. 0.3	max. 0.1	max. 0.05					
3.6	CuZn33-C26800	66-68			Rest	max. 0.3	max. 0.1	max. 0.05					
3.7	CuZn36-C27000	63.5- 65.5			Rest	max. 0.3	max. 0.1	max. 0.05					
3.8	CuZn37-C27200	62-64			Rest	max. 0.3	max. 0.1	max. 0.10					
3.9	CuSn4-C51100	Rest		0.01- 0.4			3.5- 4.5						
3.10	CuSn5-C51000	Rest		0.01- 0.4			4.5- 5.5						
3.11	CuSn6-C51900	Rest		0.01- 0.4			5.5- 7.0						
3.12	CuSn8-C52100	Rest		0.01- 0.4			7.5- 8.5						
3.13	CuSn3Zn9/ CuSn2Zn10 - C42500	87-90			Rest		1.5- 3.0						

3.3 Physical Properties

Page	Alloy	Density*	Therm. expansion coefficient **	Thermal conductivity *	Electr. Conductivity ***	Electr. Conductivity ***	Modulus of elasticity*
		g/cm³	10 ⁻⁶ K	W/(m∙K)	MS/m	IACS(%)	GPa
3.4	Cu-ETP-C11000	8.9	17.7	394	58	100	127
3.5	CuZn30-C26000	8.5	19.7	126	14	24	115
3.6	CuZn33-C26800	8.5	19.9	121	14	24	112
3.7	CuZn36-C27000	8.45	20.2	121	14	24	110
3.8	CuZn37-C27200	8.45	20.2	121	14	24	110
3.9	CuSn4-C51100	8.85	17.8	100	11	19	120
3.10	CuSn5-C51000	8.85	17.8	96	9	15	120
3.11	CuSn6-C51900	8.8	18.5	75	7.5	13	118
3.12	CuSn8-C52100	8.8	18.5	67	6.5	11	115
3.13	CuSn3Zn9/ CuSn2Zn10 - C42500	8.75	18.4	120	14	24	126

* Reference values at room temperature ** Between 20 and 300 °C

*** Values for the lowest temper class

Disclaimer: Due to possible changes and variations in the production process, the information published in the hand-out / brochure / datasheet cannot be guaranteed. The right to changes and modifications in the composition of the products is hereby explicitely reserved, so no warranty claim shall be derived from the information provided.

3.3 Standard Alloy

3.4 Cu-ETP - C11000 - CW004A

			Appli	cation Pange						
			Appin Pasic materia	I for electric	al parts					
	Physical Properties									
D	ensity	*	1	g/cm ³			8.9			
Thermal condu	ctivity	*		W/(m⋅k)			394			
Electr. condu	ictivity	***		MS/m			58/57			
Electr. condu	ictivity	***		IACS (%)			100/98.3			
Thermal expansion c. ** 10 ⁻⁶ K 17.7										
Modulus of ela	sticity	*		GPa			127			
	Electrical Conductivity (IACS%) of selected alloys									
100	_									
90	_									
80										
x 60	_									
ັ ນ 50	_									
<u>≤</u> 40										
20										
10					-					
0	(Cu-ETP	CuZn	30	CuSn4		19005 R58	0		
		Cher	nical Positior	reference	e value) %					
	(Cu			99.9					
		0			≤ 0.040					
Condition Tem cla	nper ass	Tensile strength	Yield strength	Elongation	Hardness	Electr. conductivity	Benda	ability		
		T.S.	Rp _{0.2}	A50	reference		R/t	1) 2)		
		min max.	min.	min.	value)		9	0°		
		MPa	MPa	%	HV	MS/m	GW	BW		
			() only				Strip	Strip		
			information							
Cold rolled R2	20	220 - 260	(max, 140)	33	40 - 65	58	0.5	0		
Cold rolled R2	240	240 - 330	180	10	65 - 95	57	0	0		
Cold rolled R2	290	290 - 360	250	4	90 - 110	57	0	0.5		
Cold rolled R3	360	min. 360	320	2	min. 110	57	1	2		

*Reference values at room temperature

¹⁾ $r = x \cdot t$ (strips up to t = 0.50 mm)

**Between 20 and 300 °C

*** Values for the lowest temper class

²⁾ Sample width = 10 mm / bending at smaller bending widths on request (Evaluation according to page 5.4.2. of Hand-Out)

3.5 CuZn30 - C26000 - CW505L

		Appli	cation Range							
Basic material for elec	Basic material for electrical components, installation parts in the electrical industry. Zinc content proportionally									
reduces metall costs.										
Physical Properties										
Densi	ty *		g/cm³			8.5				
Thermal conductivi	ty *		W/(m·k)			126				
Electr. conductivi	ty ***		MS/m			14				
Electr. conductivi	ty ***		IACS (%)			24				
Thermal expansion c. ** 10 ⁻⁶ K 19.7										
Modulus of elasticity * GPa 115										
Compa	rison of vield strer	ngth and electr	ical conductivi	ity (IACS%) of	selected brass a	lloys				
			Vield stre	ngth(Mna)						
100		1/(03(/0)		ingen(impu)			600			
80					_	_	- 500			
80		_					400			
60							400			
40							- 300			
40			_	_			- 200			
20							- 100			
0							L o			
CuZn5 R350	CuZn10 R350 CuZ	n15 R480 Cu	Zn30 R550 Cu	uZn33 R500	CuZn36 R550 C	uZn37 R550				
	Che	emical Positio	n (reference	e value) %						
Cu 69 - 71	Ni		max. 0.3		Fe	max. 0.05				
Zn Rest	Sn		max. 0.1							
Condition Temper	Tensile	Yield	Flongation	Hardness	Electr.	Benda	ahility			
class	strength	strength	Liongation	That unless	conductivity	Denta				
	T.S.	Rp _{0.2}	A50	reference		R/t ¹	.) 2) 3)			
	min max.	min.	min.	value)		9	0°			
	MPa	MPa	%	HV	MS/m	GW	BW			
		() only				Strip	Strip			
		information				thickness	thickness			
Cold rollod P270	270 - 250	(may 160)	40	55 - 105	14	~0.5mm	.⊲0.5mm			
Cold rolled N270	270-330	(170)	21	95 - 1/15	14	0	0			
	3 3 1 - 4 3	1 11/01	~	JJ 14J	74	, v				
Cold rolled R350	410 - 490	(350)	9	120 - 160	14	0	1			
Cold rolled R350 Cold rolled R410 Cold rolled R480	410 - 490	(350)	9 4	120 - 160 150 - 190	14 14	0	1 2			
Cold rolled R350 Cold rolled R410 Cold rolled R480 Cold rolled R550	410 - 490 480 - 570 550 - 640	(350) (430) (480)	9 4 2	120 - 160 150 - 190 170 - 210	14 14 14	0 0.5 1	1 2 3			

*Reference values at room temperature

 $^{1)}\,$ r = x \cdot t (strips up to t = 0.50 mm)

**Between 20 and 300 °C

*** Values for the lowest temper class

2) Sample width = 10 mm / bending at smaller bending widths on request (Evaluation according to page 5.4.2. of Hand-Out)

 $^{\mbox{3}\,\mbox{})}$ valid only as thermal stress relieved qualities

3.6 CuZn33 - C26800 - CW506L

			Appli	cation Range				
Basic mate	erial for electri	cal component:	s, installatior	n parts in the	electrical in	dustry. Zinc cor	ntent prop	ortionally
			reduce	s metall cost	s.			
			Physic	cal Properties	S			
	Density	*		g/cm³			8.5	
Therma	al conductivity	*		W/(m·k)			121	
Electr. conductivity *** MS/m 14								
Elect	r. conductivity	***		IACS (%)			24	
Therma	I expansion c.	**		10 ⁻⁶ K			19.9	
Modul	us of elasticity	*		GPa			112	
	Comparison of	viold strongth or	d alactrical o	onductivity (1/	(CS%) of color	tod brass allows		
	comparison of	yield strength an				nel brass alloys		
100			IACS(%)	The second	ia strength(ivi	pa)		- 600
								500
80								500
60			_	_		_		- 400
		_						- 300
40			_					- 200
20						_	-	100
								100
0	7nE 82E0 Cui	7p10 P2E0 Cu7p	1E P490 Cui	7p20 REE0 C	17p22 RE00			⊥ 0
	2113 1330 Cu		115 K460 Cu	21150 8550 C	u21155 K500	Cu21130 K350 C	u21137 K330	
-		Cher	nical Positio	n (referenc	e value) %			
Cu	66 - 68	Ni		max. 0.3		Fe	max. 0.05	
Zn	Rest	Sn		max. 0.1			1	
Condition	Temper	Tensile	Yield	Flongation	Hardness	Electr.	Benda	ability
condition	class	strength	strength	Liongution	mananess	conductivity	20110	,
		T.S.	Rp _{0.2}	A50	reference		R/t ¹) 2) 3)
		min max.	min.	min.	value)		9)°
		MPa	MPa	%	HV	MS/m	GW	BW
			() only				Strip	Strip
			information				thickness	thickness
							≪0.5mm	≤0.5mm
Cold rolled	R280	280 - 380	(max. 170)	40	55 - 95	14	0	0
Cold rolled	R350	350 - 430	(170)	23	95 - 125	14	0	0
Cold rolled	R420	420 - 500	(300)	6	125 - 155	14	0	0
Cold rolled	R500	min. 500	(450)	3	min. 155	14	0.5	0.5

*Reference values at room temperature

**Between 20 and 300 °C

*** Values for the lowest temper class

 $^{1)}\,$ r = x \cdot t (strips up to t = 0.50 mm)

 Sample width = 10 mm / bending at smaller bending widths on request (Evaluation according to page 5.4.2. of Hand-Out)

 $^{\mathbf{3}\,\mathrm{)}}$ valid only as thermal stress relieved qualities

3.7 CuZn36 - C27000 - CW507L

			Appli	cation Range						
Basic materia	al for electri	cal components	s, installation	parts in the	electrical ind	dustry. Zinc cor	ntent propo	ortionally		
reduces metall costs.										
	Physical Properties									
	Density	*		g/cm³			8.45			
Thermal o	conductivity	*		W/(m∙k)			121			
Electr. c	Electr. conductivity *** MS/m 14									
Electr. conductivity *** IACS (%) 24										
Thermal expansion c. ** 10 ^{-o} K 20.2										
Modulus of elasticity * GPa 110										
Co	mparison of	vield strength an	d electrical co	onductivity (IA	CS%) of selec	ted brass allovs				
		,	IACS(%)	∎ Yiel	d strength(M	na)				
100						/		600		
80							_	- 500		
00								- 400		
60	60									
40		_			_		_	- 300		
				_	_			- 200		
20								- 100		
0								⊥ o		
CuZn	5 R350 Cuz	n10 R350 CuZn	15 R480 Cuž	n30 R550 Cu	JZn33 R500	CuZn36 R550 C	uZn37 R550			
		Cher	nical Positior	reference	e value) %					
Cu e	63.5 - 65.5	Ni		max. 0.3		Fe	max. 0.05			
Zn I	Rest	Sn		max. 0.1						
Condition	Temper	Tensile	Yield	Flongation	Hardness	Electr.	Benda	ability		
condition	class	strength	strength	Liongation	naruness	conductivity	Denue	Jointy		
		T.S.	Rp _{0.2}	A50	reference		R/t ¹) 2) 3)		
		min max.	min.	min.	value)		90)°		
		MPa	MPa	%	HV	MS/m	GW	BW		
			() only				Strip	Strip		
			IIIIOIIIIatioii				<pre>Chickness</pre>	<pre>Chickness</pre>		
Cold rolled	R300	300 - 370	(max, 180)	38	55 - 105	14	0	0		
Cold rolled	R350	350 - 430	(170)	19	95 - 125	14	0	0		
Cold rolled	R410	410 - 490	(300)	8	120 - 155	14	0	0		
Cold rolled	R480	480 - 560	(430)	3	150 - 180	14	0.5	2		
Cold rolled	R550	min. 550	(500)	-	min. 170	14	1	3		
Cold rolled	R630	min. 630	(600)	-	min. 190	14	-	-		

*Reference values at room temperature

 $^{1)}\,$ r = x \cdot t (strips up to t = 0.50 mm)

 $^{\rm 3\,{\scriptsize)}}$ valid only as thermal stress relieved qualities

^{**}Between 20 and 300 °C

^{***} Values for the lowest temper class

²⁾ Sample width = 10 mm / bending at smaller bending widths on request (Evaluation according to page 5.4.2. of Hand-Out)

3.8 CuZn37 - C27200 - CW508L

			Appli	cation Range							
Basic mate	Basic material for electrical components, installation parts in the electrical industry. Zinc content proportionally										
			reduce	s metall costs	s.						
	Physical Properties										
	Density	*		g/cm³			8.45				
Thermal	conductivity	*		W/(m·k)			121				
Electr.	conductivity	***		MS/m			14				
Electr.	conductivity	***		IACS (%)			24				
Thermal expansion c. ** 10 ⁻⁶ K 20.2											
Modulus of elasticity * GPa 110											
	Comparison o	f vield strength a	nd electrical c	onductivity (I/	ACS%) of selec	ted brass allovs					
		,) Viel	d strength(M	na)					
100			1/(05(/)		a strength(m	54)		600			
80							_	- 500			
80			1.00					- 400			
60								- 300			
40							_	200			
20					- 11	-	-	100			
								- 100			
0 Cui	Zn5 R350 Cu	JZn10 R350 CuZ	n15 R480 Cui	Zn30 R550 Cu	JZn33 R500	CuZn36 R550 Cu	uZn37 R550	± 0			
-		Che	mical Position	n (reference	e value) %						
Cu	62 - 64	Ni		max. 0.3		Fe	max. 0.10				
Zn	Rest	Sn		max. 0.1	1		-				
Condition	Temper class	Tensile strength	Yield strength	Elongation	Hardness	Electr. conductivity	Benda	ability			
		T.S.	Rp _{0.2}	A50	reference		R/t ¹	.) 2) 3)			
		min max.	min.	min.	value)		9	D°			
		MPa	MPa	%	HV	MS/m	GW	BW			
			() only				thickness	thickness			
	D 200	200 270	Information	20	55 405		≷0.5mm	≷0.5mm			
	R300	300 - 370	(Inax. 180) (170)	38 10	05 - 105 05 - 105	14	0	0			
	R/10	350 - 450 410 - 490	(1/0)	19	33 - 125 120 - 155	14	0	0			
	R410	410 - 490	(300)	о 3	150 - 180	14	0.5	2			
	R550	min. 550	(500)	-	min. 170	14	1	3			
Cold rolled	R630	min. 630	(600)	-	min. 190	14	-	-			

*Reference values at room temperature

**Between 20 and 300 °C

*** Values for the lowest temper class

2) Sample width = 10 mm / bending at smaller bending widths on request

 $^{1)}\,$ r = x \cdot t (strips up to t = 0.50 mm)

r = x · t (strips up to t = 0.50 mm) (Evaluation according to page 5.4.2. of Hand-Out)
 ³⁾ valid only as thermal stress relieved qualities

3.9 CuSn4 - C51100 - CW450K

					Ap	plicatio	on Range						
Contact s	Contact springs; connectors; membranes; switch elements; fixed contacts. Ultra-high strength spring elements.												
					Phy	/sical P	roperties						
	Density	*			g/	ст³			8.85				
Thermal co	nductivity	*			W/((m∙k)			100				
Electr. co	nductivity	***			M	S/m			11				
Electr. co	nductivity	***			IAC	S (%)			19				
Thermal ex	pansion c.	**			10	⁻⁶ K			17.8				
Modulus o	f elasticity	*			G	iPa			120				
			Cł	emica	al Posit	tion (reference va	lue)%					
Cu	Rest	Р			0.01 -	0.4							
Sn	3.5 - 4.5							-					
Condition	Temper	Tensile strength	Yie stre	eld ngth	Elong	gation	Hardness	Electr. conductivity	В	endabilit	t y 90°^{1) 2}) 3)	
	C1033	T.S.	Rp	0.2	A	50	reference		St	rip thickne	ess≤0.5ı	nm	
		min max.	m	in.	m	in.	value)			R	/t		
		MPa	M	Ра	9	%	HV	MS/m	0	W	В	W	
			3)	4)	3)	4)			Churchala	Thermal	Churchala	Thermal	
									Stretch	stress	Stretch	stress	
Cold rolled	R290	290 - 390	max	190	4	10	70 - 105	11	0	0	0	0	
Cold rolled	R390	390 - 490	320	250	17	20	115 - 155	11	0	0	0		
Cold rolled	R480	480 - 570	440	400	8	13		11	0	0	0	0	
Cold rolled			100		6		150 - 180			0		0	
Cold rolled	R540	540 - 630	480	450	6	12	150 - 180 160 - 200	11	0	0	0.5	0 0 0	
colu rolleu	R540 R600	540 - 630 600 - 660	480 560	450 530	5	12 12	150 - 180 160 - 200 min. 180	11 11	0	0	0.5 1	0 0 0 0	
Cold rolled	R540 R600 R660	540 - 630 600 - 660 660 - 720	480 560 620	450 530 590	5	12 12 7	150 - 180 160 - 200 min. 180 min. 180	11 11 11	0	0	0.5	0 0 0 -	

*Reference values at room temperature

**Between 20 and 300 °C

*** Values for the lowest temper class

 $^{1)}\,$ r = x \cdot t (strips up to t = 0.50 mm)

2) Sample width = 10 mm / bending at smaller bending widths on request (Evaluation according to page 5.4.2. of Hand-Out)

 $^{3\,\mathrm{)}}$ valid only as thermal stress relieved qualities

4) Thermal stress relieved

3.10 CuSn5 - C51000 - CW451K

					Арр	licatio	n Range					
Contac	t springs;	connectors; me	embra	nes; sv	witch e	lemen	ts; fixed cont	tacts. Ultra-higl	n strengt	h spring e	lement	s.
					Phys	ical Pr	operties					
	Density	*			g/c	:m³			8.85			
Thermal co	nductivity	*			W/(m∙k)			96			
Electr. co	nductivity	***			MS	j/m			9			
Electr. co	nductivity	***			IACS	5 (%)			15			
Thermal ex	pansion c.	**			10	⁻⁶ K			17.8			
Modulus of	felasticity	*			GI	Ра			120			
Cu	Rest 4.5 - 5.5	P	Ch	emica	l Positio 0.01 - 1	on (r 0.4	eference val	ue) %				
Condition	Temper	Tensile strength	Yio	eld ngth	Elong	ation	Hardness	Electr.	в	endabilit	y 90° ^{1) 2}	3)
	class	тс	Pr	3		:0	(reference		C+	rin thickno	< ۱ ۲	am
		min - may		in	mi	in	value)		50	DI	55∼:0.51 / +	
		MPa	м	Pa	%	6	HV	MS/m		iw N	i r	w
			3)	4)	3)	4)				Thermal		Thermal
									Stretch	stress	Stretch	stress
						Ļ	70 405		leveled	relieved	leveled	relieved
Cold rolled	K310	310 - 390	max	. 250	4	5	/0 - 105	9	0	0	-	-
Cold rolled	R400	400 - 500	340	-	1/	-	120 - 160	9	0	U	-	-
Cold rolled	R490	490 - 580	450	440	12	19	160 - 190	9	0	U	0	0
Cold rolled	K550	550 - 640	500	480	5	13	180 - 210	9	0	U	1	0.5
Cold rolled	К630 РСОО	630 - 720	570	560	3		200 - 230	9	1	0	2	1
Cold rolled	R690	min. 690	630	600	2	4	min. 220	9	2.5	2	3.5	3

*Reference values at room temperature

**Between 20 and 300 °C

*** Values for the lowest temper class

 $^{1)}\,$ r = x \cdot t (strips up to t = 0.50 mm)

 $^{3\,\mathrm{)}}$ valid only as thermal stress relieved qualities

2) Sample width = 10 mm / bending at smaller bending widths on request (Evaluation according to page 5.4.2. of Hand-Out)

4) Thermal stress relieved

Disclaimer: Due to possible changes and variations in the production process, the information published in the hand-out / brochure / datasheet cannot be guaranteed. The right to changes and modifications in the composition of the products is hereby explicitely reserved, so no warranty claim shall be derived from the information provided.

3.10 Standard Alloy

3.11 CuSn6 - C51900 - CW452K

					App	licatio	n Range					
Contac	ct springs; o	connectors; me	embra	nes; sv	vitch e	lemen	ts; fixed con	tacts. Ultra-hig	gh streng	gth spring	g elemen	ts.
					Phys	sical Pr	operties					
	Density	*			g/	cm³			8.8			
Thermal co	nductivity	*			W/(m∙k)			75			
Electr. co	nductivity	***			M	5/m			7.5			
Electr. co	onductivity	***			IAC	S (%)			13			
Thermal ex	pansion c.	**			10	⁻⁶ K			18.5			
Modulus o	f elasticity	*			G	Ра			118			
Cu Sn	Rest 5.5 - 7.0	Ρ	Ch	emica	Positi 0.01 -	<u>on (r</u> 0.4	eference val	ue) %				
Condition	Temper	Tensile strength	Yie stre	eld ngth	Elong	ation	Hardness	Electr.	E	Bendabili	ty 90° ^{1) 2}) 3)
	class	T.S.	Ro	0.2	А	50	reference	· · · · · · · · · · · · · · · · · · ·	St	trip thickn	ess≤0.5r	nm
		min max.	m	in.	m	in.	value)			F	R∕t	
		MPa	м	Ра	9	%	HV	MS/m	G	w	В	w
			3)	4)	3)	4)				Thermal		Thermal
									Stretch	stress	Stretch	
									leveled	relieved	leveled	stress
Cold rolled	R350		max						0	0		stress relieved
Cold rolled		350 - 420	max	. 300	4	5	80 - 120	7.5	, ,	-	0	stress relieved 0
Cold rolled	R420	350 - 420 420 - 520	350	. 300 340	22	5 29	80 - 120 120 - 170	7.5 7.5	0	0	0	stress relieved 0 0
	R420 R500	350 - 420 420 - 520 500 - 590	350 450	300 340 410	22 15	5 29 22	80 - 120 120 - 170 160 - 190	7.5 7.5 7.5	0	0	0 0 0	stress relieved 0 0 0
Cold rolled	R420 R500 R560	350 - 420 420 - 520 500 - 590 560 - 650	350 450 520	300 340 410 490	22 15 10	5 29 22 15	80 - 120 120 - 170 160 - 190 180 - 210	7.5 7.5 7.5 7.5	0 0 0	0 0 0	0 0 0 0	stress relieved 0 0 0 0
Cold rolled Cold rolled	R420 R500 R560 R640	350 - 420 420 - 520 500 - 590 560 - 650 640 - 730	350 450 520 590	300 340 410 490 570	22 15 10 5	5 29 22 15 12	80 - 120 120 - 170 160 - 190 180 - 210 200 - 230	7.5 7.5 7.5 7.5 7.5	0 0 0 0	0 0 0 0	0 0 0 0 1	stress relieved 0 0 0 0 0.5

*Reference values at room temperature

 $^{1)}\,$ r = x \cdot t (strips up to t = 0.50 mm)

t (strips up to t = 0.50 mm)

 $^{3\,\mathrm{)}}$ valid only as thermal stress relieved qualities

**Between 20 and 300 °C

*** Values for the lowest temper class

 $_{\rm 2)}~$ Sample width = 10 mm $\,$ / bending at smaller bending widths on request (Evaluation according to page 5.4.2. of Hand-Out)

4) Thermal stress relieved

Disclaimer: Due to possible changes and variations in the production process, the information published in the hand-out / brochure / datasheet cannot be guaranteed. The right to changes and modifications in the composition of the products is hereby explicitly reserved, so no warranty claim shall be derived from the information provided.

3.11 Standard Alloy

3.12 CuSn8 - C52100 - CW453K

	Application Range														
Conta	Contact springs; connectors; membranes; switch elements; fixed contacts. Ultra-high strength spring elements.														
	Physical Properties														
	Density * g/cm ³ 8.8														
Thermal co	nductivity	*			W/([m∙k)			67						
Electr. co	nductivity	***			M	S/m			6.5						
Electr. co	nductivity	***			IAC	S (%)			11						
Thermal exp	pansion c.	**			10	⁻⁶ K			18.5						
Modulus of	felasticity	*			G	Ра			115						
			Cł	nemica	al Posit	ion (reference val	lue) %							
Cu	Rest	P			0.01 -	0.4									
Sn	7.5 - 8.5							-							
Condition	Temper	Tensile strength	Yie stre	eld ngth	Elong	gation	Hardness	Electr. conductivity	E	Bendabili	ty 90° ^{1) ;}	2) 3)			
	class	T.S.	Rp	0.2	A	50	reference		St	rip thickn	ess≤0.5	mm			
		min max.	m	in.	m	in.	value)			R	/t				
		MPa	M	Ра	9	%	HV	MS/m	G	śW	E	3W			
			3)	4)	3)	4)			Ctrotob	Thermal	Ctrotob	Thermal			
									leveled	relieved	leveled	relieved			
Cold rolled	R370	370 - 450	max	. 300	5	0	80 - 120	6.5	0	0	0	0			
Cold rolled	R450	450 - 550	370	350	28	35	120 - 175	6.5	0	0	0	-			
Cold rolled	R540	540 - 630	460	440	22	27	170 200	6.5	0	0	0	0			
Cold rolled	DC00						170-200				0	0			
Cold rollod	K600	600 - 690	520	480	16	20	180 - 220	6.5	0	0	1	0 0 0			
Colu Tolleu	R600 R660	600 - 690 660 - 750	520 600	480 580	16 10	20 14	180 - 220 210 - 240	6.5 6.5	0 0	0	1 3	0 0 0 2			
Cold rolled	R660 R660 R740	600 - 690 660 - 750 740 - 810	520 600 680	480 580 660	16 10 5	20 14 8	170 - 200 180 - 220 210 - 240 220 - 260	6.5 6.5 6.5	0	0 0 2	1 3 -	0 0 0 2 3			
Cold rolled Cold rolled	R660 R660 R740 R800 ⁵⁾	600 - 690 660 - 750 740 - 810 800 - 930	520 600 680 720	480 580 660 700	16 10 5 -	20 14 8 4	170 - 200 180 - 220 210 - 240 220 - 260 230 - 290	6.5 6.5 6.5 6.5	0 0 -	0 0 2 -	1 3 -	0 0 0 2 3 -			

On request in fine grain size version

*Reference values at room temperature

¹⁾ $r = x \cdot t$ (strips up to t = 0.50 mm)

*** Values for the lowest temper class **Between 20 and 300 °C 2) Sample width = 10 mm / bending at smaller bending widths on request (Evaluation according to

page 5.4.2. of Hand-Out)

³⁾ valid only as thermal stress relieved qualities

⁴⁾ Thermal stress relieved ⁵⁾ Thickness range: 0,15 - 0,60 mm

3.13 CuSn3Zn9 / CuSn2Zn10 - C42500 - CW454K

Application Range									
Good compromise between	alloy properties, lower metall cos	t and better scrap value assessment conditions.							
	Physical Propert	ies							
Density *	g/cm ³	8.75							
Thermal conductivity *	W/(m·k)	120							
Electr. conductivity ***	MS/m	14							
Electr. conductivity ***	IACS (%)	24							
Thermal expansion c. **	10 ⁻⁶ K	18.4							
Modulus of elasticity *	GPa	126							

			Che	emical	Positic	on (referen	ce value) %							
	CuSn3Zn9 - CW 454K CuSn3Zn10 - C42500													
Cu		Rest		Cu			87 -90							
Sn		1.5 - 3.5		Sn			1.5 - 3.0							
Zn		7.5 - 10		Zn			Rest							
	Temper	Tensile	Yield		Electr.									
Condition	class	strength	strength	Elong	ation	naiuliess	conductivity	Benda	ability	Benda	ability			
		T.S.	Rp _{0.2}	A	50	reference		R/t	1) 2) 3)	R/t	L) 2) 3)			
		min max.	min.	m	in.	value)		9	0°	18	0°			
		MPa	MPa	9	6	HV	MS/m	GW	BW	GW	BW			
			() only					Strip	Strip	Strip	Strip			
			information					thickness	thickness	thickness	thickness			
								\leq 0.5mm	\leq 0.5mm	\leqslant 0.5mm	\leq 0.5mm			
Cold rolled	R320	320 - 380	max. 230	2	5	80 - 100	14	0	0	0	0			
Cold rolled	R380	380 - 430	(200)	16	20 3)	110 - 140	14	0	0	0.5	1			
Cold rolled	R430	430 - 520	(330)	6	10 3)	140 - 170	14	0	0	1	1.5			
Cold rolled	R510	510 - 600	(430)	3	8 3)	160 - 190	14	0	1	2	2.5			
Cold rolled	R580	580 - 690	(520)	-	-	180 - 220	14	1	2	2.5	4			
Cold rolled	R660	min. 660	(610)	-	-	min. 200	14	-	-	-	-			

*Reference values at room temperature

Between 20 and 300 °C Sample width = 10 mm / be page 5.4.2. of Hand-Out) * Values for the lowest temper class

 $^{2\,\mathrm{)}}~$ Sample width = 10 mm $\,$ / bending at smaller bending widths on request (Evaluation according to

 $^{1)}\,$ r = x $\cdot\,t\,$ (strips up to t = 0.50 mm)

³⁾ valid only as thermal stress relieved qualities

Disclaimer: Due to possible changes and variations in the production process, the information published in the hand-out / brochure / datasheet cannot be guaranteed. The right to changes and modifications in the composition of the products is hereby explicitely reserved, so no warranty claim shall be derived from the information provided.

3.13 Standard Alloy

4.1 Overview of High Performance Alloy

Page	ASTM	DIN EN	CEN	Application
4.6	C19010	CuNiSi		Hardenable Cu-Ni-Si alloy preferred in automotive, electrical and electronic industries. The alloy is especially suitable for components with middle level strength requirements (up to 620 MPa) in combination with good electrical conductivity and resistance to relaxation.
4.7	C19005 (C19002) ****	CuNiSi		Modified C19005 (Cu-Ni-Si) alloy, as a tinned version, which has reduced peeling-off effects depending on the conditions of use
4.8	C70250	CuNi3Si		Connectors, bent parts, relays
4.90	C70310	CuNiSi		Hardenable, higher alloyed Cu-Ni-Si alloys for high strength requirements up to 800 MPa in combination with good electrical conductivity, bendability and for the Cu-Ni-Si alloys typical good relaxation resistance. Partly suitable as substitution for beryllium alloys. Good resistance against stress corrosion cracking.
4.10	C14410	CuSn	CW 117C ****	Current carrying springs, blade contacts, relay boxes, busbars; very good scrap conditions of tinned scrap, advantageous price.
4.11	C14415	CuSn	CW117C	Current carrying springs, blade contacts, relay boxes, busbars; very good scrap conditions of tinned scrap, advantageous price. International version of C14410
4.12	C18665	CuMg		Connectors for automotive, electric and electronic applications, relais, current carrying springs, busbars and relay boxes with spring properties; combined high electrical conductivity at highest strength and relaxation resistance; excellent bending at middle strength.
4.13	C19400	CuFe2P	CW 107C	Hardenable Cu-Fe alloy with good electrical conductivity for components with low and medium strength requirements. "Senior" (oldest) special alloy. Good resistance against relaxation. Classical material for terminals, lead- frames and power transistors.

**** Deviation in the chemical composition

4.2 Chemical Composition

Page	Alloy	Cu (%)	Cr (%)	Fe (%)	Mg (%)	Ni (%)	Ag (%)	Sn (%)	Si (%)	Zn (%)	Zr (%)	Ti (%)	Other (%)
4.6	C19010	Rest				0.8- 1.8			0.15- 0.35				max. 0.8
4.7	C19005	Rest				1.4- 1.7		0.02- 0.3	0.2- 0.35	0.20- 0.70			max. 0.5
4.8	C70250	min. 96.2			0.05- 0.30	2.2- 4.2			0.25- 1.2				Rest
4.9	C70310	Rest				1.0- 4.0		max. 1.00	0.08- 1.00	max. 2.00			max. 0.5
4.10	C14410	min.99.90 incl. Ag+Sn						0.10- 0.20					max. 0.1
4.11	C14415	min.99.6 incl. Ag+Sn						0.10- 0.15					max. 0.1
4.12	C18665	min. 99.0			0.4- 0.9								
4.13	C19400	Rest		2.1- 2.6						0.05- 0.20			max. 0.2

4.3 Physical Properties

Page	Alloy	Density*	Therm. expansion coefficient **	Thermal conductivity *	Electr. Conductivity ***	Electr. Conductivity ***	Modulus of elasticity *
		g/cm ³	10 ⁻⁶ K	W/(m⋅K)	MS/m	IACS (%)	GPa
4.6	C19010	8.9	16.8	260	35 / 29	60 / 50	135
4.7	C19005	8.9	16.8	260	33 / 27	57 / 47	135
4.8	C70250	8.8	17.6	190	23	40	130
4.9	C70310	8.85	17	185	25 / 23	43 / 40	132
4.10	C14410	8.9	17.3	330	44	76	120
4.11	C14415	8.9	18	350	47	81	120
4.12	C18665	8.8	17.3	270	34	58	130
4.13	C19400	8.9	16.3	260	35	60	125

* Reference values at room temperature ** Between 20 and 300 °C *** Values for the lowest temper class

4.4 Alloy Consideration for Connectors and Electro-mechanical Components

Disclaimer: Due to possible changes and variations in the production process, the information published in the hand-out / brochure / datasheet cannot be guaranteed. The right to changes and modifications in the composition of the products is hereby explicitly reserved, so no warranty claim shall be derived from the information provided.

4.4 High Performance Alloy

4.5 Segmentation of Selected Alloys

Disclaimer: Due to possible changes and variations in the production process, the information published in the hand-out / brochure / datasheet cannot be guaranteed. The right to changes and modifications in the composition of the products is hereby explicitly reserved, so no warranty claim shall be derived from the information provided.

4.5 High Performance Alloy

4.6 C19010

					Appli	ication Range	2				
Hardena	able Cu-Ni	-Si alloy prefe	rred in auto	motiv	e, elect	rical and ele	ctronic industri	es. The all	oy is espec	cially suital	ole for
compone	nts with n	niddle level sti	rengtn requ	ireme	nts (up	to 620 MPa)	in combinatio	n with goo	d electrica	il conductiv	vity and
				1	Physi	cal Propertie	c				
	Density	*		g	/cm ³	carriopertie	3	89			
Thermal cor	nductivity	*		W	/(m·k)			260			
Electr. con	nductivity	***		Ň	1S/m			35/29			
Electr. con	nductivity	***		IAC	CS (%)			60/50			
Thermal exp	bansion c.	**		1	0 ⁻⁶ K			16.8			
Modulus of	elasticity	*		(GPa			135			
R/t: Bendin	ıg 90° @ 10	mm bending v	vidth								
			Compar	ison o	of vield	strength a	nd electrical			IACS (%)	
3.5				onduc	, tivity (of selected a	alloys		60		
3								-11	- 50		
2.5									- 40	□ Bendahilit	•v 90°
S) 1 5					I				- 30	GW, 10mr	n, R/t
₹ 1.5									- 20		
0.5			-		-				- 10		
0.5									[Bendabilit	:y 90°
-	C19	010 R580	C42500	R580		L CuSn6 R560	CuZn	30 R550		BW, 10111	п, ку с
			Cha		Desitie	- (
Cu		Post	Che	emical	Othor	n (referenc	max 0.8				
Ni		08-18			other		11184. 0.0				
Si		0.15 - 0.35									
	Temper	Tensile	Yield				Electr.				
Condition	class	strength	strength	FIOU	gation	Hardness	conductivity	Bend	аршту	Benda	аршту
		T.S.	Rp _{0.2}	A	50	reference		R/t	1):	R/t	1)
		min max.	min.	n	nin.	value)		9	0°	18	30°
		MPa	MPa		%	HV	MS/m	GW	BW	GW	BW
								Strip	Strip	Strip	Strip
								≤0.5mm	≤0.5mm	≤0.5mm	≤0.5mm
	R360	360 - 430	300	12	14 ³⁾	100 - 130	35	0	0	0	0
	R410	410 - 470	360	9	11 ³⁾	125 - 155	35	0	0	0.5	1
Cold rolled	R460	460 - 520	410	7	9 ³⁾	135 - 165	35	0.5	1	1.5	3
	R520	520 - 580	460	5	7 ³⁾	145 - 175	35	1	2	2.5	4
	R580	580 - 650	520		9	160 - 210	29	1	1	3	5

*Reference values at room temperature

 $^{1)}\,$ r = x $\cdot\,t\,$ (strips up to t = 0.50 mm)

**Between 20 and 300 °C

*** Values for the lowest temper class

²⁾ Sample width = 10 mm / bending at smaller bending widths on request (Evaluation according to page 5.4.2. of Hand-Out)

 $^{\mathbf{3}\,)}$ valid only as thermal stress relieved qualities

4.7 C19005 (C19002)****

					Applic	ation Range									
Modified Cu-Ni-Si alloy, which in tinned version does not exhibit peeling-off of the coating during long-time temperature															
exposure of up to 130°C. The further material characteristics are mostly identical to those of C19010 with the exception of															
			electric	cal cor	Physic	ity, which is s	slightly lower.								
	Density	*		g	/cm ³	ai Fioperties	•	89							
Thermal co	onductivity	*		W/	′(m·k)			260							
Electr. co	onductivity	***		N	IS/m			33/27							
Electr. co	onductivity	***		IAC	CS (%)			57/47							
Thermal ex	kpansion c.	**		1() ⁻⁶ К			16.8							
Modulus o	Modulus of elasticity * GPa 135														
R/t: Bending	90° @ 10 mr	n bending widt	h												
3.5			Com	pariso	n of y	ield strengt	h and electric	al	- 50	IACS (%)					
3 -				con	ductivi	ity of select	ed alloys	-111-	- 45						
2.5									- 40						
ŵ 2 -				-11					- 30	- Rondahi	lity 00°				
Ϋ́ 1.5 -									- 25	GW, 10r	nm, R/t				
<u>≤</u> 1 .				1	L				- 20						
0.5				1	J				- 10						
0.5									- 5	🖽 Bendabi	lity 90°				
0	C19002	R580	C42500 R	580		CuSn6 R560	CuZn	30 R550	0	BW, 10n	nm, R/t				
C.,		Deat	Cher	nical F	Position	reference	e value) %								
CU Ni		Rest			Sn Zn		0.02 - 0.3								
c;		0.2 0.25			Othor		0.20 - 0.70								
31	Temner	Tensile	Vield		other		Flectr								
Condition	class	strength	strength	Elong	gation	Hardness	conductivity	Benda	ability	Benda	ability				
		T.S.	Rp 0.2	A	50	reference		R/t	1) 2)	R/t	1) 2)				
		min max.	min.	m	iin.	value)		9	0°	18	30°				
		MPa	MPa		%	HV	MS/m	GW	BW	GW	BW				
								Strip	Strip	Strip	Strip				
								≤0.5mm	≤0.5mm	≪0.5mm	≤0.5mm				
	R360	360 - 430	300	12	14 ³⁾	100 - 130	33	0	0	0	0.5				
Cold colls 1	R410	410 - 470	360	9	11 ³⁾	125 - 155	33	0	0.5	0.5	1				
Cold rolled	R460	460 - 520	410	7	9 ³⁾	135 - 165	33	0.5	1	1.5	3				
	R520	520 - 580	460	5	7 ³⁾	145 - 175	33	1	2	2.5	4				
	R530 ⁴⁾	530 - 630	430	1	4	150 -190	27	0	0	1	2				
Precipitation	R580	580 - 660	540		8	170 - 210	27	1	1	3	5				
the second second second	R580 S	580 - 660	520		9	170 - 210	27	1	1	2	3				
nardened	R620 ⁵¹ 620 - 700 560 7 180 - 210 27 1 15 3 5														
nardened	R620 ⁵⁾	620 - 700	560		7	180 - 210	27	1	1.5	3	5				
*Reference value	R620 ⁵⁾	620 - 700	560	**Betu	7 veen 20 :	180 - 210	27	1 Values for t	1.5	3	5				

(strips up to t = 0.50 mm)

according to page 5.4.2. of Hand-Out)

 $^{\rm 3\,)}$ valid only as thermal stress relieved qualities

4) Thickness on request

5) Thickness range: 0,15 - 0,60 mm

**** Deviation in the chemical composition

Disclaimer: Due to possible changes and variations in the production process, the information published in the hand-out / brochure / datasheet cannot be guaranteed. The right to changes and modifications in the composition of the products is hereby explicitly reserved, so no warranty claim shall be derived from the information provided.

4.7 High Performance Alloy

			Ар	plication Ran	ge			
			Connecto	ors, bent part	s, relays			
			Phy	sical Propert	ies			
	Density	*		g/cm³			8.8	
Thermal co	nductivity	*		W/(m·k)			190	
Electr. co	nductivity	***		MS/m			23	
Electr. co	nductivity	***		IACS (%)			40	
Thermal ex	pansion c.	**		10 ⁻⁶ K			17.6	
Modulus o	f elasticity	*		GPa			130	
	,							
रू ¹⁰⁰]				St	ress relax	ation of C70	0250 R62	20 –
5) 90 -								—
- 08 tr								
<u>ຣ</u> 70 -								
- ⁶⁰								
E 50 -		 1	25 °C 🚽	−150 °C		2		_
2 40 +		200				700 000		1000
0	100	200	300 4	00 500	600 (h)	/00 800	900	1000
			EX	cosure time	(n)			
		Cl	nemical Posit	tion (refere	nce value)	%		
Cu	min. 96.2		Si	0.25 - 1.2		Other	Rest	
Ni	2.2 - 4.2		Mg	0.05 - 0.30				
	Temper	Tensile	Yield			Electr.		
Condition	class	strength	strength	Elongation	Hardness	conductivity	Benda	ability
		T.S.	Rp 0.2	A50	(reference		R/t ¹	.) 2) 3)
		min max.	min.	min.	value)		9	0°
		MPa	MPa	%	HV	MS/m	GW	BW
			() only				Strip	Strip
			information				thickness	thickness
							\leq 0.5mm	\leq 0.5mm
Cold rolled	R620	620 - 760	500	10	180 - 240	23	0	0
Cold rolled	R655	655 - 825	585	7	190 - 250	23	1	1
Cold rolled	R690	690 - 860	655	5	220 - 260	23	1.5	1.5
Cold rolled	R750	750 - 860	700	4	230 - 260	23	2	2

*Reference values at room temperature

**Between 20 and 300 °C

*** Values for the lowest temper class

 $^{1)}\,$ r = x \cdot t (strips up to t = 0.50 mm)

²⁾ Sample width = 10 mm / bending at smaller bending widths on request (Evaluation according to page 5.4.2. of Hand-Out)

4.9 C70310

	Application Range											
Har	Hardenable, higher alloyed Cu-Ni-Si alloys for high strength requirements up to 800 MPa in combination with good electrical conductivity, bendability and for the Cu-Ni-Si alloys typical good relaxation resistance. Partly suitable as substitution for beryllium alloys. Good resistance against stress corrosion cracking.											
Physical Properties												
Density * Thermal conductivity * Electr. conductivity *** Electr. conductivity *** Thermal expansion c. **					g/cm ³ W/(m·k) MS/m IACS (%) 10 ⁻⁶ K			-	8.85 185 25/23 43/40 17			
1010	Modulus of elasticity GPa 132											
Electrical conductivity (IACS%)	Vitigation of year strength and electrical conductivity (RCS%) of selected alloys IACS(%) ■ Yield strength(Mpa) 100 40 400 400 400 400 400 400											
				Che	mical	Positic	n (referenc	e value) %				
Cu Ni Si			Rest 1.0 - 4.0 0.08 - 1.00		Sn max. 1.00 Zn max. 2.00 Other max. 0.5			max. 1.00 max. 2.00 max. 0.5				
Con	dition	Temper class	Tensile strength T.S.	Yield strength Rp _{0.2}	Elon;	gation	(reference	Electr. conductivity	Bendability R/t ^{1) 2)}		ility Bendability ²⁾ R/t ¹⁾²⁾	
			MPa	MPa		%	HV	MS/m	GW GW Strip thickness ≪0.5mm	BW Strip thickness ≤0.5mm	GW Strip thickness ≤0.5mm	BW Strip thickness ≪0.5mm
		R360	360 - 430	250	14	16 ³⁾	100 - 130	25	0	0	0	0.5
		R410	410 - 470	360	9	12 ³⁾	125 - 155	25	0	0.5	0.5	1
Colo	l rolled	R460	460 - 520	410	7	10 ³⁾	135 - 165	25	0.5	1	1.5	3
		R520	520 - 580	460	5	8 ³⁾	145 - 175	25	1	2	2.5	3.5
		R580	580 - 650	520	4	6 ³⁾	170 - 200	25	1	2.5	3	5
		R620	620 - 720	540		16	180 - 240	23	0	0	1	1.5
Preci	pitation	R660	660 - 750	590		10	200 - 250	23	1	1	1.5	2
har	dened	R750	750 - 830	680		8	210 - 260	22	2	2	3	4
		R800	>800	750		5	> 210	22	2	3	4	5

*Reference values at room temperature

10000

**Between 20 and 300 °C

*** Values for the lowest temper class

 $^{1)} \,$ r = x \cdot t (strips up to t = 0.50 mm)

2) Sample width = 10 mm / bending at smaller bending widths on request (Evaluation according to page 5.4.2. of Hand-Out)

 $^{3\,\mathrm{)}}$ valid only as thermal stress relieved qualities

4.10 C14410

	Application Range										
	Current carrying springs, blade contacts, relay boxes, busbars;										
very good scrap conditions of tinned scrap, advantageous price.											
Physical Properties											
Density * g/cm ³ 8.9											
Thermal conductivity * W/(m·k) 330											
EI	ectr. co	nductivity	***					44			
Tho	mal av		**		10 ⁻⁶ K			17.2			
Mo	dulus o	f elasticity	*		GPa			17.3			
		<u> </u>	. ,				(1.0.000()				
Comparison of yield strength and electrical conductivity (IACS%) of selected alloys											
(%	100				IAC5(70)		a engen(impa)				700
AC	00									-	600 🖌
2	00										500 S
tivit	60				_	-					400 뒱
40 10										300 ម	
									-	200 ដ	
<u>त</u> ु 20 ———————————————————————————————————								-	100 ¹		
ectr	0										D
ū		Cu-E	TP R360	Cuž	2n30 R630		CuSn4 R700		C14410 R46	0	
				Cher	nical Positio	n (referen	ce value) %				
Cu (ii	ncl. Ag-	⊦Sn)	min. 99.0		Other	max. 0.1					
Sn			0.10 - 0.20								
Con	dition	Temper	Tensile	Yield	Flongation	Hardness	Electr.	Bend	ahility	Bend	ability
com	ancion	class	strength	strength	LIONSALION	riai ulless	conductivity	Denta	ability	Denta	Jointy
			T.S.	Rp _{0.2}	A50	reference		R/t	1) 2)	R/t	1) 2)
			min max.	min.	min.	value)		9	0°	18	0°
			MPa	MPa	%	HV	MS/m	GW	BW	GW	BW
					3)			Strip	Strip	Strip	Strip
								≤0.5mm	≤0.5mm	≤0.5mm	≤0.5mm
Cold	rolled	R250	min. 250	max. 140	20	60 - 85	44	0	0	0	0
Cold	rolled	R300	300 - 370	270	10	80 - 110	44	0	0	0	0
Cold	rolled	R360	360 - 430	310	7	110 - 130	44	0	0	0.5	1
Cold	rolled	R420	420 - 490	370	5	120 - 150	44	1	1	2	2.5
Cold	rolled	R460	min. 460	410	4	min. 135	44	1	1.5	2.5	3

*Reference values at room temperature

**Between 20 and 300 °C

*** Values for the lowest temper class

 $^{1)} \, r$ = x $\cdot \, t \,$ (strips up to t = 0.50 mm)

 $^{2\,\rm O}$ Sample width = 10 mm / bending at smaller bending widths on request (Evaluation according to page 5.4.2. of Hand-Out)

 $^{3\,\mathrm{)}}$ valid only as thermal stress relieved qualities

**** Deviation in the chemical composition

4.11 C14415

Application Range										
Current carrying springs, blade contacts, relay boxes, busbars; very good scrap conditions of tinned scrap,										
advantageous price. International version of C14410										
Physical Properties										
	Density * g/cm ³ 8.9									
Thermal conductivity * W/(m·k) 350										
Electr.	conductivity	***		MS/m			47			
Electr.	conductivity	***		IACS (%)			81			
Thermal	expansion c.	**		10 ⁻⁶ K			18			
Modulus	of elasticity	*		GPa			120			
		Cher	mical Positio	n (reference	e value) %					
Cu (incl. Ag+	Sn)	min. 99.6								
Sn		0.10 - 0.15								
Other		max. 0.1								
Condition	Temper	Tensile	Yield	Flowertien	Handaaaa	Electr.	Bond			
Condition	class	strength	strength	Elongation	Haruness	conductivity	Denua	ability		
		T.S.	Rp _{0.2}	A50	reference		R/t	1) 2)		
		min max.	min.	min.	value)		9)°		
		MPa	MPa	%	HV	MS/m	GW	BW		
			*				Strip	Strip		
							thickness	thickness thickness		
Cold collect	DOEO	250 220	200	0	60.00	47	≪0.5mm	≪0.5mm		
	R250	200 270	200	9	00-90 9E 120	47	0	0		
	R300	360 - 430	250	4	03 - 120 105 - 125	47	0	0		
	R300	420 400	250	2	100 150	47	1	1		
cold rolled	K42U	420 - 490	350	۷	120 - 150	47	1	T		

*Reference values at room temperature

**Between 20 and 300 °C

*** Values for the lowest temper class

 $^{1)}\,$ r = x \cdot t (strips up to t = 0.50 mm)

2) Sample width = 10 mm / bending at smaller bending widths on request (Evaluation according to page 5.4.2. of Hand-Out)

 $^{\rm 3\,{\it)}}$ valid only as thermal stress relieved qualities

4.12 C18665

Application Range											
Connectors for automotive, electric and electronic applications, relais, current carrying springs, busbars and relay boxes with											
spring properties; combined high electrical conductivity at highest strength and relaxation resistance; excellent bending at middle											
strength.											
Physical Properties											
Uensity * g/cm³ 8.8											
Floctr co	anductivity	***		VV/	(m·ĸ)			270			
Electr. co	anductivity	***			S (%)			58			
Thermal ex		**		10	л- ⁶ к			173			
Modulus	of elasticity	*		(5Pa			130			
moudius e	, clusticity				5. 0			100			
			Chei	mical F	Positior	n (reference	e value) %				
Cu (incl. Ag)	min. 99.0									
Mg		0.4 - 0.9									
	Tompor	Tonsilo	Viold				Floats				
Condition	class	strength	strength	Elong	gation	Hardness	conductivity	Benda	ability	Benda	ability
	ciuss	TS	Rnaa	Δ	50	(reference	conductivity	P/+	1)	P/+	1)
		min - max	min	m	nin.	value)		9	0°	18	s0°
		MPa	MPa		%	HV	MS/m	GW	BW	GW	BW
								Strip	Strip	Strip	Strip
								thickness	thickness	thickness	thickness
								≪0.5mm	≪0.5mm	≪0.5mm	≪0.5mm
	R380	380 - 460	330	14	17°	115 - 145	34	0	0	0	0.5
	R460	460 - 520	410	10	12 ³⁾	140 - 165	34	0.5	1	1.5	3
Cold rolled	R520	520 - 570	460	8	10 ³⁾	160 - 180	34	1	2.5	2	5
	R570	570 - 620	500	6	8 ³⁾	175 - 195	34	2.5	5	3.5	8
	R620 ⁴⁾	min. 620	550	3	4 ³⁾	min. 190	34	3	6	5	10
				-							

*Reference values at room temperature

 $^{1)}\,$ r = x \cdot t (strips up to t = 0.50 mm)

*** Values for the lowest temper class

 Sample width = 10 mm / bending at smaller bending widths on request (Evaluation according to page 5.4.2. of Hand-Out)

 $^{3\,\mathrm{)}}$ valid only as thermal stress relieved qualities

4) Thickness on request

4.13 C19400

	Application Range											
Hardeı (olde	Hardenable Cu-Fe alloy with good electrical conductivity for components with low and medium strength requirements. "Senior" (oldest) special alloy. Good resistance against relaxation. Classical material for terminals, lead-frames and power transistors.											
	Physical Properties											
		Density	*		g/cm³			8.9				
Thermal conductivity * W/(m·k) 260												
Electr. conductivity *** MS/m 35												
Electr. conductivity *** IACS (%) 60												
Thern	nal ex	pansion c.	**		10 ⁻⁶ K			16.3				
Modu	ulus o	f elasticity	*		GPa			125				
	Comparison of yield strength and electrical conductivity (IACS%) of selected alloys											
(%	100				ACS(%)	I fiel	d strengtn(ivipa)			50	n	
ACS	100									50	ି ନୁ	
Ę	80			_				-		40	D R	
vit	60									20	ຸ ເ	
quct	00									- 50	eng (
Sonc	40									20	n <u>s</u>	
calo											lielc	
sctri	20										_	
Ĕ	0											
			C1	9400 R520			CuFe0.1P R	420 (C19210))			
				Che	mical Positio	n (referend	e value)%					
Cu			Rest		Other		max. 0.2					
Fe			2.1 - 2.6									
Zn			0.05 - 0.20									
Condi	tion	Temper	Tensile	Yield	Flongation	Hardness	Electr.	Bend	ahility	Bend	ability	
contai		class	strength	strength	Liongation	inarune33	conductivity	Denta	ability	Denta	ability	
			T.S.	Rp _{0.2}	A50	reference		R/t	1) 2)	R/t	1) 2)	
			min max.	min.	min.	value)		9	0°	18	80°	
			MPa	MPa	%	HV	MS/m	GW	BW	GW	BW	
					3)			thickness	thickness	thickness	thickness	
								~0.5mm				
Cold re	olled	R360	360 - 430	270	15	110 - 135	35	0	0	0	0.5	
Cold ro	olled	R420	420 - 480	380	9	130 - 150	35	0.5	0.5	1	1	
Cold ro	olled	R480	480 - 540	430	6	140 - 160	35	1	1	1.5	1.5	
Cold re	olled	R520	520 - 580	470	4	min 140	35	2.5	35	3	4.5	

*Reference values at room temperature **Between 20 and 300 °C

 $^{1)}\,$ r = x $\cdot\,t\,$ (strips up to t = 0.50 mm)

*** Values for the lowest temper class

Sample width = 10 mm / bending at smaller bending widths on request (Evaluation according to page 5.4.2. of Hand-Out)

 $^{\mathbf{3}\,)}$ valid only as thermal stress relieved qualities

Disclaimer: Due to possible changes and variations in the production process, the information published in the hand-out / brochure / datasheet cannot be guaranteed. The right to changes and modifications in the composition of the products is hereby explicitly reserved, so no warranty claim shall be derived from the information provided.

2)

5.1.1 Relaxation Parameter

• Definition:

- » Gradual decrease of stress under constant elongation
- » Remaining stress (contact force) which is the result of the loss of initial stress, depending on the test method and conditions

• Methods:

- » Three point bending test
- » Four point bending test
- » Tube bending
- » Cantilever bending test (discontinuous / continuous)

• Test conditions (standard practice):

- » Temperature (100 / 125 / 150 / 200 °C)
- » Time (50 / 100 / 250 / 500 / 1000 / 3000 h)
- » Initial stress (50 or 80 % of yield strength (Rp0,2/Y.S.))

Initial stress 0.5 Rp (0.5 Y.S.); 1000h; bad way

Disclaimer: Due to possible changes and variations in the production process, the information published in the hand-out / brochure / datasheet cannot be guaranteed. The right to changes and modifications in the composition of the products is hereby explicitly reserved, so no warranty claim shall be derived from the information provided.

5.1.2 Important Material Data

5.1.3 Relaxation (Different Initial Stresses)

500Mpa/1000hr

Disclaimer: Due to possible changes and variations in the production process, the information published in the hand-out / brochure / datasheet cannot be guaranteed. The right to changes and modifications in the composition of the products is hereby explicitly reserved, so no warranty claim shall be derived from the information provided.

5.1.3 Important Material Data

Long time: initial stress 400Mpa; 150 $^\circ\!\!\mathbb{C}\,$; bad way

Disclaimer: Due to possible changes and variations in the production process, the information published in the hand-out / brochure / datasheet cannot be guaranteed. The right to changes and modifications in the composition of the products is hereby explicitly reserved, so no warranty claim shall be derived from the information provided.

5.1.4 Important Material Data

5.2 Softening Characteristic

Softening Characteristic at 500 $^\circ C$

Disclaimer: Due to possible changes and variations in the production process, the information published in the hand-out / brochure / datasheet cannot be guaranteed. The right to changes and modifications in the composition of the products is hereby explicitly reserved, so no warranty claim shall be derived from the information provided.

5.2 Important Material Data

5.3 Bend Fatigue at Room Temperature

Disclaimer: Due to possible changes and variations in the production process, the information published in the hand-out / brochure / datasheet cannot be guaranteed. The right to changes and modifications in the composition of the products is hereby explicitly reserved, so no warranty claim shall be derived from the information provided.

5.3 Important Material Data

5.4 Definition Bending Axle

addititionally valid for 180° bending. (sample width = 10 mm, 90 $^{\circ}$ testmethod with V-block and punch, 180 $^{\circ}$ testmethod with 180 $^{\circ}$ bend test machine.)

Disclaimer: Due to possible changes and variations in the production process, the information published in the hand-out / brochure / datasheet cannot be guaranteed. The right to changes and modifications in the composition of the products is hereby explicitely reserved, so no warranty claim shall be derived from the information provided.

5.4 Important Material Data

6.1 Reasons for The Hot Dip Tinning

- Good corrosion and oxidation protection
- Formation from an intermetallic phase
- Reduction from insertion and drawing force
- Good solderability
- Good layer adhesion and formability
- Reduced occurrence of tin whisker
- Application of tin-alloys, for example tin-silver
- Efficient and cost-efficient procedure

Disclaimer: Due to possible changes and variations in the production process, the information published in the hand-out / brochure / datasheet cannot be guaranteed. The right to changes and modifications in the composition of the products is hereby explicitly reserved, so no warranty claim shall be derived from the information provided.

6.1 Hop Dip Tinning

6.2 Coating Programme

Hot dip tinning acc. to DIN EN 13148 (RoHS conform)

- Strip thickness: 0.20 1.20 mm (Coating thickness for the strip thickness >1.2 mm on request)
- Strip width: up to 330 mm
- Coatings: pure tin, tin-silver, Thermic tin
- Coating thickness*: 1.0 3.0 μm

2.0 - 5.0	μm
4.0 - 10.0	μm
10.0 - 20.0	иm

* Max. coating thickness \leq 2,0 μ m on request

Electroplating acc. to DIN EN 14436 (RoHS conform) Provided by KMD outsourcing vendors

Disclaimer: Due to possible changes and variations in the production process, the information published in the hand-out / brochure / datasheet cannot be guaranteed. The right to changes and modifications in the composition of the products is hereby explicitly reserved, so no warranty claim shall be derived from the information provided.

6.3 Hop Dip Tinning

6.4 Hot Dip Tinning

Two Methods

- By mechanical wiping
- Hot Air Level Tinning (airknife) (HALT method)

0.8 - 1.5	μm	lowest mating and unmating forces
■ 1.0 - 2.0	μm	reduced mating and unmating forces
■ 1-3	μm	standard coating for connectors
2 – 5	μm	good protection against corrosion
4-10	μm	good storage and solderability
■ 10 – 20	μm	soldering depot

Other coatings on request									
Strip thickness:	0.15 mm – 1.20 mm								
Strip width:	10 – 330 mm	with untinned edges							

Tin Layers

Sn10 - standard tin	standard hot-dip tinning tin layer thickness 1-3 μm; pure tin
Sn11 - thin-prec	reduced mating and unmating forces, reduced fretting corrosion tin layer thickness 0.8-1.5 μm ; pure tin
Sn12 - Sn Sold	improved solderability tin layer thickness 3-6 μm ; pure tin
Sn13 - thermic-tin	lowest mating and unmating forces, abrasion resistant, IMP =
Sn20 - thick-tinning	optimised contacting for the electrical connecting technology tin layer thickness 10-20 $\mu m;$ pure tin
Sn28M - tin-silver	temperature-application > 130 °C., improved electrical properties compared to pure tin, compatible to lead-free solder.

(IMP = Inter Metallic Phase)

6.5 Sn28M - Tin Silver

Test conditions (done with strips or according to connector standard tests)

- Microhardness (by Fischerscope)
- Soldering by dip-test (without aging)
- Mating and unmating force (Tab: CuSn base material; Hot Dipped with pure tin)
- Contact normal force (direct measurement, 10N pre and 7N after stresstest)
- Electrical stresstest
- » 1. 100 cycles at 6 hours -40° C + 160° C (with voltage)
- » 2. 21 days humid heat (without voltage), after same as 1.
- Electrical Stresstest at 30 Ampere (derating curve)
- Fretting corrosion (length 50 μm, amount of cycles below Rk < 10 Ω)

Coating	Pure Tin = Sn10 (C19400)	SnAg = Sn28M (C19010)	100 % IMP = Sn13 (C19010)	
Microhardness	low	high	very high	
Soldertest	good	very good	bad	
Mating and unmating	high	up to 50 % less	up to 60 % less	
Electrical stresstest	bad	very good	good	
	medium	reduced	medium	
Electrical stresstest (30 Amp.)	power dissipation	power dissipation	power dissipation	
1,7	(Derating)	(Derating)	(Derating)	
fretting corrosion	little	considerably better	little better	

Disclaimer: Due to possible changes and variations in the production process, the information published in the hand-out / brochure / datasheet cannot be guaranteed. The right to changes and modifications in the composition of the products is hereby explicitly reserved, so no warranty claim shall be derived from the information provided.

6.5 Hop Dip Tinning

6.6 Evaluation of Tinned Surfaces

		Sn11	Sn10	Sn10	Sn10	Sn10	Sn28M	Sn13 *
	Requirement	thin-prec	pure tin	pure tin	pure tin	pure tin	tin-silver	thermic- tin
		0.8 - 1.5 μ m	1 - 2 μm	1 - 3 µm	2 - 5 µm	4 - 10 μm	1 - 3 µm	0.8 - 1.5 μ m
micro hardness	high	2	2-3	3	3-4	4	2	1
mating and unmating forces	low	1-2	2	2-3	3	4	2	1
number of mating	high	3	3	3	2-3	2	2-3	1
abrasion	low	2	2	2-3	3	4	2	1
coefficient of friction	low	2	2-3	2-3	3	3-4	3	1
fretting corrosion	low	2-3	2-3	2-3	3	4	2	2
bendability	small radius	3	2-3	2-3	2	2	2	4
contact resistance	minimum	2	2	2	2	2	1	2
corrosion resistance		2	2	1-2	1-2	1	2	3
whisker resistance	none	2	2	2	2	2-3	1	2
solderability	good	3	3	2-3	2	1	2	4
softening resistance	high	2-3	3	3	3-4	4	2	1

* Interconnection of male- and female- Terminal on basis soft/hard

2 = good

1 = very good

Disclaimer: Due to possible changes and variations in the production process, the information published in the hand-out / brochure / datasheet cannot be guaranteed. The right to changes and modifications in the composition of the products is hereby explicitly reserved, so no warranty claim shall be derived from the information provided.

3 = suitable

4 = less suitable

Period of storage

Bare Strips

Degree of protection max. period of storage

Passivator: benzotriazole: 3 months

* Storage conditions: 18-20°C and max. 60% relative humidity

Tinned bands (Hot Air Level Tinning)

Degree of protection	maximum storage ***	
Tinning	max. 6 months	zinc-bearing base material
	max. 6 months	thin coating layer like 0.8-1.5 μm and 1-2 μm
	max. 12 months	low-alloyed copper materials
	max. 12 months	bronze material (CuSnXX)

** Storage conditions: 18-20°C and max. 60% relative humidity. Different storage conditions can modify and product characteristics. For example the solderability can be reduced

*** Maximum storage includes the period that stays in KMD inventory

Reference:

In principle the details of the chemical composition of the tin layer relate exclusively to the bath composition of the molten tin crucible. Characteristic of the structure of a molten tin layer are the phases: Pure tin, Cu6Sn5 and Cu35n, whose chemical composition inevitably deviates from the tin crucible.

7.1 The Normal Force and Its Influence Factors

The normal force and its influence factors

Influence the normal force

- mating and unmating force
- contact spring force
- fixing force in the plastic box
- contact spring force

- number of matings
- initial stress
- spring deflection
- scragging
- relaxation

Disclaimer: Due to possible changes and variations in the production process, the information published in the hand-out / brochure / datasheet cannot be guaranteed. The right to changes and modifications in the composition of the products is hereby explicitly reserved, so no warranty claim shall be derived from the information provided.

7.1 The normal force and its influence factors

Requirement Base material: Cu	Property	Proposal
Strength and	Tensile Strength and	C19005, C18665, C70310, C18160,
high contact force	Modulus of Elasticity	C51900, C52100, C70250
Maintain a low	Relaxation and	Precipitation hardened qualities of
contact resistance	Corrosion resistance	C19005, C70310, C18160
Form / bend parts	Bendability	C19005, C18665, C70310, C51900, C52100, C70250
Avoid temperature increase	Electrical Conductivity	C18665, C14410, C18160
Dissipate heat	Thermal Conductivity	C18665, C14410, C18160
No decrease of hardness due to heat	Softening Temperature	C19005, C70310, C18160, C70250
Surfaces:		
Low insertion force and withdrawal forces	Thinner layers, harder tin	Sn11, Sn13, Sn28M
High temperature use	Thermal stability	Sn13, Sn28M
Solderability, assemble to PCB	Solderability	Sn28M

Disclaimer: Due to possible changes and variations in the production process, the information published in the hand-out / brochure / datasheet cannot be guaranteed. The right to changes and modifications in the composition of the products is hereby explicitly reserved, so no warranty claim shall be derived from the information provided.

8.1 Summary

Hong Kong JV HQ, China KMD (HK) Holdings Ltd.

35/F Central Plaza, 18 Harbour Road Wanchai, Hong Kong Peoples' Republic of China Phone: +852 25931560 info-hongkong@kmdgroup.com

Chinese Factory KMD Precise Copper Strip (Henan) Co., Ltd.

No. 282 West Renmin Road Xinxiang, Henan Peoples' Republic of China Phone: +86 2164478680 info-china@kmdgroup.com

Asia Pacific Sales Headquater KMD Precise Copper Strip (Henan) Co., Ltd. Shanghai Branch

Manpo International Business Center, Room 310A XinHua Road 644, Changning District Zip 200052, Shanghai Peoples' Republic of China Phone: +86 2164478680 info-china@kmdgroup.com